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Introduction    

In 2018 we celebrate 50 Years of Forth. And when I looked for a new eBook project, I realized that one area is not very well covered:  

How do the Forth internals work? 

How can you build a Minimal Processor executing Forth directly? 

How do you write an Assembler in Forth? 

When I looked around for some documentation, I remembered Brad’s excellent series of articles again. They seemed to fit very well together. 

I contacted Brad and asked for permission to publish them and add them to the Forth Bookshelf I had started 5 years ago. 

He liked the idea, so I started editing and formatting. I did not change any of the original material. The only part I added was an appendix, where I re-did some of the 

pictures in Excel, so I could understand them better. 

And as in many cases, additional material will be made available on the www.Forth-eV.de  Wiki, we will start with the appendix added there to download and edit 

locally, and add more that we might come up with. 

There are many references and links as part of the articles – a good source to search for additional information for interested parties. 

This is not new material – actually exactly 25 years old (half the Forth age) - but is still the best material I could find for this project to understand the Forth Internals 

better - covering Software and Hardware. And more importantly: the Forth structure is stable and has not changed that much. Probably one reason why no new 

material has been done. 

I have to thank Brad Rodriguez for the copyright to publish this documentation. 

Enjoy reading and any feedback please send to epldfpga@aol.com. 

There is another eBook which covers similar aspects: Chen-Hanson Ting’s eForth Overview at https://www.amazon.co.uk/eForth-Overview-C-H-Ting-

ebook/dp/B01LR47JME/ref=asap_bc?ie=UTF8 

Juergen Pintaske, ExMark, 4 April  2018 

  

https://www.amazon.co.uk/Juergen-Pintaske/e/B00N8HVEZM
http://www.forth-ev.de/
mailto:epldfpga@aol.com
https://www.amazon.co.uk/eForth-Overview-C-H-Ting-ebook/dp/B01LR47JME/ref=asap_bc?ie=UTF8
https://www.amazon.co.uk/eForth-Overview-C-H-Ting-ebook/dp/B01LR47JME/ref=asap_bc?ie=UTF8
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MOVING FORTH     by Brad Rodriguez 

 

Part 1: Design Decisions in the Forth Kernel 
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1.17  REFERENCES 
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FIGURE 1. Z80 CP/M CAMELFORTH MEMORY MAP  

assuming CP/M BDOS starts at ED00 hex.  
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* used during compilation of DO..LOOPs. 
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FIGURE 2. HEADER STRUCTURES  
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Primitive PISC 8086 

NEXT 4 23 

EXECUTE 4 19 

DROP 6 29 

EXIT 6 39 

BRANCH 8 36 

DUP 8 46 

@ 10 52 

LIT 10 46 

R> 10 50 

R@ 10 44 

>R 10 51 

! 10 53 

ENTER 10 49 

OVER 12 50 

AND 12 53 

0< 14 47 

SWAP 12 61 

?BRANCH 16 51/56 

UM+ 18 69 
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The schematic diagram of the PISC-1a is available if you have Adobe Acrobat or another .PDF reader. Thanks to Derry Bryson for converting the schematics to 

PDF files.    

 

 

B.Y.O. ASSEMBLER 

 
 

where n = a signed integer value, 

      r = X (00), Y (01), U (10), or S (11) 

      x = don't care 

 

 

http://www.bradrodriguez.com/papers/pisc.pdf
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INSTRUCTION SET 

 

Inherent addressing group 
 

MOTOROLA FORTH  MOTOROLA FORTH 

     

ABX ABX,  MUL MUL, 

ASLA ASLA,  NEGA NEGA, 

ASLB ASLB,  NEGB NEGB, 

ASRA ASRA,  NOP NOP, 

ASRB ASRB,  ORA ORA, 

CLRA CLRA,  ORB ORB, 

CLRB CLRB,  ROLA ROLA, 

COMA COMA,  ROLB ROLB, 

COMB COMB,  RORA RORA, 

DAA DAA,  RORB RORB, 

DECA DECA,  RTI RTI, 

DECB DECB,  RTS RTS, 

INCA INCA,  SEX SEX, 

INCB INCB,  SWI SWI, 

LSLA LSLA,  SWI2 SWI2, 

LSLB LSLB,  SWI3 SWI3, 

LSRA LSRA,  SYNC SYNC, 

LSRB LSRB,  TSTA TSTA, 

   TSTB TSTB, 
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Register-register group 
 

MOTOROLA FORTH  MOTOROLA FORTH 

     

EXG s,d s d EXG  TFR s,d s d TFR 

 

 

Immediate-addressing-only group 
 

MOTOROLA FORTH  MOTOROLA FORTH 

     

ANDCC #n n # 

ANDCC, 

 PSHS regs n # PSHS, 

CWAI #n n # 

CWAI, 

 PSHU regs n # PSHU, 

ORCC #n n # 

ORCC, 

 PULS regs n # PULS, 

   PULU regs n # PULU, 

 

 

Note:  

Motorola allows the PSH and PUL instructions to contain a register list.   

The Forth assembler requires the programmer to compute the bit mask for this list and supply it as an immediate argument. 

 

Indexed-addressing-only group 

(with example addressing modes) 
 

 

MOTOROLA FORTH  MOTOROLA FORTH 
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LEAS D,U U ,D LEAS,  LEAX [,S++] S ,++ [] LEAX, 

LEAU -5,Y Y -5 , LEAU,  LEAY [1234] 1234 [] LEAY, 

 

 

General-addressing group 

(with example addressing modes) 

 

MOTOROLA FORTH  MOTOROLA FORTH 

ADCA #20 20 # ADCA,  LDA #20 20 # LDA, 

ADCB <30 30 <> ADCB,  LDB <30 30 <> LDB, 

ADDA 2000 2000 ADDA,  LDD 2000 2000 LDD, 

ADDB [1030] 1030 [] ADDB,  LDS [1030] 1030 [] LDS, 

ADDD ,S S 0, ADDD,  LDU ,X X 0, LDU, 

ANDA 23,U U 23 , ANDA,  LDX 23,Y Y 23 , LDX, 

ANDB A,X X A, ANDB,  LDY A,S S A, LDY, 

ASL  B,Y Y B, ASL,  LSL B,U U B, LSL, 

ASR  D,X X D, ASR,  LSR D,S S D, LSR, 

BITA ,S+ S ,+ BITA,  NEG ,X+ X ,+ NEG, 

BITB ,X++ X ,++ BITB,  ORA ,S++ S ,++ ORA, 

CLR  ,Y- Y ,- CLR,  ORB ,U- U ,- ORB, 

CMPA ,U-- U ,-- CMPA,  ROL ,Y-- Y ,-- ROL, 

CMPB -5,PCR -5 ,PCR CMPB,  ROR 12,PCR 12 ,PCR ROR, 

CMPD [,Y] Y 0, [] CMPD,  SBCA [,U] U 0, [] SBCA, 

CMPS [7,Y] Y 7 , [] CMPS,  SBCB [7,U] U 7 , [] SBCB, 

CMPU [A,S] S A, [] CMPU,  STA [A,X] X A, [] STA, 
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CMPX [B,U] U B, [] CMPX,  STB [B,Y] Y B, [] STB, 

CMPY [D,X] X D, [] CMPY,  STD [D,S] S D, [] STD, 

EORA [,Y+] Y ,+ [] EORA,  STS [,U+] U ,+ [] STS, 

EORB [,U++] U ,++ [] EORB,  STU [,Y++] Y ,++ [] STU, 

COM  [,S-] S ,- [] COM,  STX [,S-] S ,- [] STX, 

DEC [,X--] X ,-- [] DEC,  STY [,X--] X ,-- [] STY, 

INC [5,PCR] 5 ,PCR [] INC,  SUBA [3,PCR] 3 ,PCR [] SUBA, 

JMP [300] 300 [] JMP,  SUBB [300] 300 [] SUBB, 

JSR 1234 1234 JSR,  SUBD 1234 1234 SUBD, 

   TST #2 2 # TST, 

 
 

Note that, in the Forth assembler, #  signifies Immediate addressing, and <>  signifies Direct addressing. 

 

Many instructions do not allow immediate addressing. 

Refer to the Motorola data sheet. 

 
 

Branch instructions 
 

 

MOTOROLA FORTH  MOTOROLA FORTH 

     

BCC label adrs BCC,  BLT label adrs BLT, 

BCS label adrs BCS,  BMI label adrs BMI, 

BEQ label adrs BEQ,  BNE label adrs BNE, 

BGE label adrs BGE,  BPL label adrs BPL, 

BGT label adrs BGT,  BRA label adrs BRA, 

BHI label adrs BHI,  BRN label adrs BRN, 
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BHS label adrs BHS,  BSR label adrs BSR, 

BLE label adrs BLE,  BVC label adrs BVC, 

BLO label adrs BLO,  BVS label adrs BVS, 

BLS label adrs BLS,    

 

 

The branch instructions in the Forth assembler expect an absolute address.   

 

The relative offset is computed, and the "long branch" form of the instruction is used if necessary. 
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Some Pictures re-drawn 

A short note from Juergen Pintaske: 

In addition to just reformatting and publishing this material, I wanted to understand the pictures as much as possible, and as well how all of these addess lists hang together. 

As it turned out, grasping it and to redraw the pictures will take more time than planned.  

There was a decision that had to be taken: 

      Publish like the original material now 

      or  
      Delay the publication  

      and include the additional material. 

 

As this is eBook is planned for educational purposes,  

and more material might be added anyway, I decided: 

Time to get it out. 

Material will be added as part of the update process. 

And then with the link to a place where parts can be downloaded. 

Here just one picture, showing address areas of the dictionary to be filled as you read the eBook. Here starting from boundaries, but could start anywhere and with variable length. 
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These eBooks are a spare time activity -  and job, family, dog come first. 

Juergen Pintaske – Exmark - April 2018   
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