
1

Moving Forth

Part 1 – 8

A Minimal TTL Processor

B.Y.O. Assembler

Selected Articles

by Brad Rodriguez

Shortened Version – just Pictures

2

This eBook is Copyright © ExMark, 04 April 2018
The current Forth Bookshelf can be found at
https://www.amazon.co.uk/Juergen-Pintaske/e/B00N8HVEZM
1 Charles Moore - Forth - The Early Years: Background information about the beginnings of this Computer Language

2 Charles Moore - Programming A Problem Oriented Language: Forth - how the internals work

3 Leo Brodie - Starting Forth

4 Leo Wong – Juergen Pintaske – Stephen Pelc FORTH LITE TUTORIAL: Code tested with free MPE VFX Forth, SwiftForth and Gforth or else

5 Stephen Pelc - Programming Forth: Version July 2016

6 Tim Hentlass - Real Time Forth

7 Chen-Hanson Ting - Footsteps In An Empty Valley issue 3

8 Chen-Hanson Ting - Zen and the Forth Language: EFORTH for the MSP430G2552 from Texas Instruments

9 Chen-Hanson Ting - eForth and Zen - 3rd Edition 2017: with 32-bit 86eForth v5.2 for Visual Studio 2015

10 Chen-Hanson Ting - eForth Overview

11 Chen-Hanson Ting - FIG-Forth Manual Document /Test in 1802 IP

12 Chen-Hanson Ting - EP32 RISC Processor IP: Description and Implementation into FPGA – ASIC tested by NASA

13 Chen-Hanson Ting – Irriducible Complexity

14 Burkhard Kainka - Learning Programming with MyCo: Learning Programming easily - independent of a PC (Forth code to follow soon)

15 Burkhard Kainka - BBC Micro:bit: Tests Tricks Secrets Code, Additional MicroBit information when running the Mecrisp Package

16 Juergen Pintaske – A START WITH FORTH - Bits to Bites Collection – 12 Words to start, then 35 Words, Javascript Forth on the Web, more

17 Burkhard Kainka – Thomas Baum – Web Programming ATYTINY13

18 Brad Rodriguez - Moving Forth / TTL CPU / B.Y.O. Assembler v14

https://www.amazon.co.uk/Juergen-Pintaske/e/B00N8HVEZM
https://wiki.forth-ev.de/doku.php/en:projects:microbit:start

3

Introduction

In 2018 we celebrate 50 Years of Forth. And when I looked for a new eBook project, I realized that one area is not very well covered:

How do the Forth internals work?

How can you build a Minimal Processor executing Forth directly?

How do you write an Assembler in Forth?

When I looked around for some documentation, I remembered Brad’s excellent series of articles again. They seemed to fit very well together.

I contacted Brad and asked for permission to publish them and add them to the Forth Bookshelf I had started 5 years ago.

He liked the idea, so I started editing and formatting. I did not change any of the original material. The only part I added was an appendix, where I re-did some of the

pictures in Excel, so I could understand them better.

And as in many cases, additional material will be made available on the www.Forth-eV.de Wiki, we will start with the appendix added there to download and edit

locally, and add more that we might come up with.

There are many references and links as part of the articles – a good source to search for additional information for interested parties.

This is not new material – actually exactly 25 years old (half the Forth age) - but is still the best material I could find for this project to understand the Forth Internals

better - covering Software and Hardware. And more importantly: the Forth structure is stable and has not changed that much. Probably one reason why no new

material has been done.

I have to thank Brad Rodriguez for the copyright to publish this documentation.

Enjoy reading and any feedback please send to epldfpga@aol.com.

There is another eBook which covers similar aspects: Chen-Hanson Ting’s eForth Overview at https://www.amazon.co.uk/eForth-Overview-C-H-Ting-

ebook/dp/B01LR47JME/ref=asap_bc?ie=UTF8

Juergen Pintaske, ExMark, 4 April 2018

https://www.amazon.co.uk/Juergen-Pintaske/e/B00N8HVEZM
http://www.forth-ev.de/
mailto:epldfpga@aol.com
https://www.amazon.co.uk/eForth-Overview-C-H-Ting-ebook/dp/B01LR47JME/ref=asap_bc?ie=UTF8
https://www.amazon.co.uk/eForth-Overview-C-H-Ting-ebook/dp/B01LR47JME/ref=asap_bc?ie=UTF8

4

Contents:

Part 1 Design Decisions in the Forth Kernel 6

Part 2 Benchmarks and Case Studies of Forth Kernels 24

Part 3 Demystifying DOES> 43

Part 4 Assemble or Metacompile? 72

Part 5 The Z80 Primitives 78

Part 6 The Z80 high-level kernel 83

Part 7 CamelForth for the 8051 94

Part 8 CamelForth for the 6809 101

Hardware A Minimal TTL Processor

for Architecture Exploration
106

B.Y.O –

Part 1
Build Your Own Assembler in Forth 117

B.Y.O. -

Part 2

A 6809 Forth Assembler 139

Collection Publications by Bradford J. Rodriguez 153

Appendix: Some Links 157

 Some pictures redrawn 158

CV Brad Rodtiguez 159

eBook brad_rodriguez-Forth_v14

5

Pictures in this eBook:

Chapter 1
Figure 1: Indirect Threaded Code

Figure 2: Direct Threaded Code

Figure 3: Subroutine Threaded Code

Figure 4: Token Threaded Code

Chapter 3
Figure 1: An ITC Forth Word

Figure 2: Three Constants

Figure 3: ITC Before and After “NEXT”

Figure 4: DTC Before and After “NEXT”

Figure 5: Subroutine Threaded Code

Figure 6: Code Words

Figure 7: ITC ;CODE

Figure 8: ITC DODOES

Figure 9: DTC DODOES

Figure 10: STC DODOES

Figure 11: ITC DOES>

Chapter 6
Figure 1: Z80 CP/M Camelforth Memory Map

Figure 2: Header Structures

Chapter 7
Figure 1: Board Modifications

A Minimal TTL Processor
Figure 1: Basic PISC-1a

Figure 2: Parallel Fetch and Execute

Figure 3: The Mutable PISC

Comparison: Primitives – PISC - 8086

6

MOVING FORTH by Brad Rodriguez

Part 1: Design Decisions in the Forth Kernel

1.1 INTRODUCTION

1.2 THE ESSENTIAL HARDWARE

1.3 16 OR 32 BIT?

1.4 THE THREADING TECHNIQUE

1.5 Indirect Threaded Code (ITC)

1.6 Direct Threaded Code (DTC)

1.7 Jump to NEXT, or code it in-line?

1.8 Subroutine Threaded Code (STC)

1.9 STC with in-line expansion; optimization; direct compilation

1.10 Token Threaded Code (TTC)

1.11 Segment Threaded Code

1.12 REGISTER ALLOCATION

1.13 The Classical Forth Registers

1.14 Use of the Hardware Stack

1.15 Direct and Subroutine Threading

1.16 Some examples

1.17 REFERENCES

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

FIGURE 1. Z80 CP/M CAMELFORTH MEMORY MAP

assuming CP/M BDOS starts at ED00 hex.

23

* used during compilation of DO..LOOPs.

24

FIGURE 2. HEADER STRUCTURES

25

26

Figure 1

27

28

29

30

Primitive PISC 8086

NEXT 4 23

EXECUTE 4 19

DROP 6 29

EXIT 6 39

BRANCH 8 36

DUP 8 46

@ 10 52

LIT 10 46

R> 10 50

R@ 10 44

>R 10 51

! 10 53

ENTER 10 49

OVER 12 50

AND 12 53

0< 14 47

SWAP 12 61

?BRANCH 16 51/56

UM+ 18 69

31

The schematic diagram of the PISC-1a is available if you have Adobe Acrobat or another .PDF reader. Thanks to Derry Bryson for converting the schematics to

PDF files.

B.Y.O. ASSEMBLER

where n = a signed integer value,

 r = X (00), Y (01), U (10), or S (11)

 x = don't care

http://www.bradrodriguez.com/papers/pisc.pdf

32

INSTRUCTION SET

Inherent addressing group

MOTOROLA FORTH MOTOROLA FORTH

ABX ABX, MUL MUL,

ASLA ASLA, NEGA NEGA,

ASLB ASLB, NEGB NEGB,

ASRA ASRA, NOP NOP,

ASRB ASRB, ORA ORA,

CLRA CLRA, ORB ORB,

CLRB CLRB, ROLA ROLA,

COMA COMA, ROLB ROLB,

COMB COMB, RORA RORA,

DAA DAA, RORB RORB,

DECA DECA, RTI RTI,

DECB DECB, RTS RTS,

INCA INCA, SEX SEX,

INCB INCB, SWI SWI,

LSLA LSLA, SWI2 SWI2,

LSLB LSLB, SWI3 SWI3,

LSRA LSRA, SYNC SYNC,

LSRB LSRB, TSTA TSTA,

 TSTB TSTB,

33

Register-register group

MOTOROLA FORTH MOTOROLA FORTH

EXG s,d s d EXG TFR s,d s d TFR

Immediate-addressing-only group

MOTOROLA FORTH MOTOROLA FORTH

ANDCC #n n #

ANDCC,

 PSHS regs n # PSHS,

CWAI #n n #

CWAI,

 PSHU regs n # PSHU,

ORCC #n n #

ORCC,

 PULS regs n # PULS,

 PULU regs n # PULU,

Note:

Motorola allows the PSH and PUL instructions to contain a register list.

The Forth assembler requires the programmer to compute the bit mask for this list and supply it as an immediate argument.

Indexed-addressing-only group

(with example addressing modes)

MOTOROLA FORTH MOTOROLA FORTH

34

LEAS D,U U ,D LEAS, LEAX [,S++] S ,++ [] LEAX,

LEAU -5,Y Y -5 , LEAU, LEAY [1234] 1234 [] LEAY,

General-addressing group

(with example addressing modes)

MOTOROLA FORTH MOTOROLA FORTH

ADCA #20 20 # ADCA, LDA #20 20 # LDA,

ADCB <30 30 <> ADCB, LDB <30 30 <> LDB,

ADDA 2000 2000 ADDA, LDD 2000 2000 LDD,

ADDB [1030] 1030 [] ADDB, LDS [1030] 1030 [] LDS,

ADDD ,S S 0, ADDD, LDU ,X X 0, LDU,

ANDA 23,U U 23 , ANDA, LDX 23,Y Y 23 , LDX,

ANDB A,X X A, ANDB, LDY A,S S A, LDY,

ASL B,Y Y B, ASL, LSL B,U U B, LSL,

ASR D,X X D, ASR, LSR D,S S D, LSR,

BITA ,S+ S ,+ BITA, NEG ,X+ X ,+ NEG,

BITB ,X++ X ,++ BITB, ORA ,S++ S ,++ ORA,

CLR ,Y- Y ,- CLR, ORB ,U- U ,- ORB,

CMPA ,U-- U ,-- CMPA, ROL ,Y-- Y ,-- ROL,

CMPB -5,PCR -5 ,PCR CMPB, ROR 12,PCR 12 ,PCR ROR,

CMPD [,Y] Y 0, [] CMPD, SBCA [,U] U 0, [] SBCA,

CMPS [7,Y] Y 7 , [] CMPS, SBCB [7,U] U 7 , [] SBCB,

CMPU [A,S] S A, [] CMPU, STA [A,X] X A, [] STA,

35

CMPX [B,U] U B, [] CMPX, STB [B,Y] Y B, [] STB,

CMPY [D,X] X D, [] CMPY, STD [D,S] S D, [] STD,

EORA [,Y+] Y ,+ [] EORA, STS [,U+] U ,+ [] STS,

EORB [,U++] U ,++ [] EORB, STU [,Y++] Y ,++ [] STU,

COM [,S-] S ,- [] COM, STX [,S-] S ,- [] STX,

DEC [,X--] X ,-- [] DEC, STY [,X--] X ,-- [] STY,

INC [5,PCR] 5 ,PCR [] INC, SUBA [3,PCR] 3 ,PCR [] SUBA,

JMP [300] 300 [] JMP, SUBB [300] 300 [] SUBB,

JSR 1234 1234 JSR, SUBD 1234 1234 SUBD,

 TST #2 2 # TST,

Note that, in the Forth assembler, # signifies Immediate addressing, and <> signifies Direct addressing.

Many instructions do not allow immediate addressing.

Refer to the Motorola data sheet.

Branch instructions

MOTOROLA FORTH MOTOROLA FORTH

BCC label adrs BCC, BLT label adrs BLT,

BCS label adrs BCS, BMI label adrs BMI,

BEQ label adrs BEQ, BNE label adrs BNE,

BGE label adrs BGE, BPL label adrs BPL,

BGT label adrs BGT, BRA label adrs BRA,

BHI label adrs BHI, BRN label adrs BRN,

36

BHS label adrs BHS, BSR label adrs BSR,

BLE label adrs BLE, BVC label adrs BVC,

BLO label adrs BLO, BVS label adrs BVS,

BLS label adrs BLS,

The branch instructions in the Forth assembler expect an absolute address.

The relative offset is computed, and the "long branch" form of the instruction is used if necessary.

37

Some Pictures re-drawn

A short note from Juergen Pintaske:

In addition to just reformatting and publishing this material, I wanted to understand the pictures as much as possible, and as well how all of these addess lists hang together.

As it turned out, grasping it and to redraw the pictures will take more time than planned.

There was a decision that had to be taken:

 Publish like the original material now

 or
 Delay the publication

 and include the additional material.

As this is eBook is planned for educational purposes,

and more material might be added anyway, I decided:

Time to get it out.

Material will be added as part of the update process.

And then with the link to a place where parts can be downloaded.

Here just one picture, showing address areas of the dictionary to be filled as you read the eBook. Here starting from boundaries, but could start anywhere and with variable length.

38

These eBooks are a spare time activity - and job, family, dog come first.

Juergen Pintaske – Exmark - April 2018

39

Bradford J. Rodriguez, Ph.D.

Embedded and Distributed Control Systems -- contract design and development of microprocessor hardware and software, for maximum

performance on limited resources in HW and SW.

SELECTED PROJECTS see it all at http://www.bradrodriguez.com/resume.htm

2013 ALN11 Controller: Created a single-board ARM replacing discontinued 8051 board. New board uses Philips LPC2138 (ARM7 family);

2013 Wireless Anemometer: Wrote in GCC for a micropower 915 MHz wireless anemometer, MSP430G2553 MCU, and the TI CC1150 SPI transmitter, operates on accumulated

wind energy.

2011 DT12 Controller: Designed a single-board computer as drop-in replacement for OEM board, for a low-power battery operated test instrument, from 6303 PolyForth to

MC9S12X SwiftX Forth.

2011- present MiniPods: Developed software for a family of 2.4 GHz devices to log work hours, travel distance, fuel dispensing, and operator inspections. Implemented in Forth using

MC9S12, MC13202 transceiver.

2009- 2011 USB OSBDM Linux drivers: Software to control an Open Source BDM device from a Linux desktop via USB. OSBDM, debug for 9S08, 9S12, and 9S12X microcontrollers.

2006-

present

D6 ZPC: Ongoing development and maintenance of the "ZPC" software on the "D6" hardware, in Forth and H8 assembler. New and improved features include expanded and

multitrack MIDI recording.

2008 MSP430 CamelForth: Developed a Forth compiler/interpreter for the Texas Instruments MSP430 processor; less than 6K bytes of ROM, and offers "direct-to-Flash"

compilation

2006-

2007

SuperPod: Converted the IsoPod operating software for this new board using the Freescale DSP56F8365 processor. The core was converted from C to assembler for threefold

greater speed.

1994 CamelForth: Developed CamelForth, a portable ANS Forth compiler for Harvard and von Neumann processors, with implementations for Z80, 8051, and 6809.

1993 68HC16 MPE Forth: Wrote MPE Forth for the 68HC16: Kernel, multitasker, and documentation.

1991 Z8 MPE Forth: Wrote MPE Forth for Z8/Super8, including kernel, multitasker, and documentation.

1987 VectorForth: Developed software for PC-based array processing workstation. Wrote assembler and system interface for Vortex and Point-I array coprocessor boards, polyForth

language support.

http://www.bradrodriguez.com/email.htm
http://www.bradrodriguez.com/resume.htm

40

1978- present Personal research: Forth kernels, expert systems, assemblers, metacompiler and A "Minimal" Microprogrammed Forth Machine using Standard TTL

EDUCATION

1998 Ph.D. in Electrical Engineering, McMaster University,

1989 M.S. in Computer Science, Bradley University.

1980 M.S. in Electrical Engineering, Bradley University.

1977 B.S. in Electrical Engineering, Bradley University.

------------ MISCELLANEOUS ------------

Languages: Fluent in Forth, C, and assembler for 6502, 6809, 68HC11, 68HC12, 68HC16, 68000, 8051, 8080, 8086, ARM7, H8/S, LSI-11, MSP430, Super8, Z8,

Z80. Proficient in Pascal, BASIC, FORTRAN, PHP, Tcl.

Operating Systems: Experienced with Unix, Linux, RT-11, CP/M, MS/DOS, polyFORTH, FreeRTOS.

Exmark published v16 –shortened version 20 April 2018

