Gforth

for version 0.7.9°20130821, August 21, 2013

Neal Crook
Anton Ertl
David Kuehling

Bernd Paysan
Jens Wilke

This manual is for Gforth (version 0.7.9°20130821, August
21, 2013), a fast and portable implementation of the ANS
Forth language. It serves as reference manual, but it also
contains an introduction to Forth and a Forth tutorial.

Copyright (© 1995, 1996, 1997, 1998, 2000, 2003,
2004,2005,2006,2007,2008,2009,2010,2011,2012 Free
Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documen-
tation License, Version 1.1 or any later version published
by the Free Software Foundation; with no Invariant Sec-
tions, with the Front-Cover texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below. A copy of
the license is included in the section entitled “GNU Free
Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to
copy and modify this GNU Manual, like GNU software.
Copies published by the Free Software Foundation raise
funds for GNU development.”

Table of Contents

Preface....... 1
1 Goals of Gforth.................... 2
2 Gforth Environment 4
2.1 Invoking Gforth, 4
2.2 Leaving Gforth.......... 10
2.3 Command-line editing 10
2.4 Environment variables....................... 12
2.5 Glorthfiles....... 13
2.6 Gforthinpipes.................coiiii... 14
2.7 Startupspeedoiiiiiiiiiii 15
3 Forth Tutorial.................... 18
3.1 Starting Gforth............. 18
3.2 Syntax ... 19
3.3 CrashCourse.......... 19
34 Stack. ... 20
3.5 Arithmetics i 20
3.6 Stack Manipulation................... 21
3.7 Using files for Forth code 22
3.8 Comments.covviiiii 23
3.9 Colon Definitions............cooviivi ... 24
3.10 Decompilation................cooiii.. 25
3.11 Stack-Effect Comments..................... 25
312 Types ..o 28
3.13 Factoring. ... 29

3.14 Designing the stack effect................... 30
3.15 Local Variables............... ... 31
3.16 Conditional execution 32
3.17 Flags and Comparisons..................... 34
3.18 General Loops. ..o, 35
3.19 Counted loops........ccovviiiiiiiii.. 37
3.20 Recursioncooiiiiiiiiiiiii... 38
3.21 Leaving definitions or loops................. 40
3.22 Return Stack...........ol 40
3.23 Memory. ... 42
3.24 Characters and Strings 44
3.25 Alignment.............. i 45
3.26 Floating Point............., 46
327 Files .. 49
3.27.1 Open file for input..................... 49
3.27.2 Create file for output 49
3.27.3 Scan file for a particular line........... 50
3.27.4 Copy input to output.................. 51
3.275 Closefiles.........oooiiiiiiiii .. 51
3.28 Interpretation and Compilation Semantics and
Immediacy ... 51
3.29 Execution Tokens 53
3.30 Exceptions............ocoiiiiiiiiiiit. 56
3.31 Defining Words............ ..o, 57
3.32 Arraysand Records 60
3.33 POSTPONEttt 60
3.34 Literal.........ooiiiiiiiiii i 62
3.35 Advanced macros.............coiiiiiia.. 63
3.36 Compilation Tokens 64
3.37 Wordlists and Search Order................. 65

iii

4 An Introduction to ANS Forth

................................... 68
4.1 Introducing the Text Interpreter............. 69
4.2 Stacks, postfix notation and parameter passing
.. 72
4.3 Your first Forth definition 78
4.4 How does that work? 80
4.5 Forth is written in Forth..................... 85
4.6 Review - elements of a Forth system......... 86
4.7 Where To Go Nextovii... 87
4.8 EXErciSes......ouiuiiiinn i 89
5 Forth Words...................... 90
5.1 Notationoooiiiiiiiiiiiiiiin.. 90
5.2 Case insensitivity...........cooviiieninn... 93
5.3 Comments.ottt 94
54 Boolean Flags............. ... it 94
5.5 Arithmetic............o 95
5.5.1 Single precision.............. ..o 95
5.5.2 Double precision........................ 96
5.5.3 Bitwise operations...................... 97
5.5.4 Numeric comparison.................... 98
5.5.5 Mixed precision........................ 100
5.5.6 Floating Point......................... 100
5.6 Stack Manipulation......................... 105
5.6.1 Datastack.......................... .. 105
5.6.2 Floating point stack 106
5.6.3 Returnstack 107
5.6.4 Localsstack........................... 107
5.6.5 Stack pointer manipulation............ 107

0.7 Memory....coouiiiiiiii 108

iv

5.7.1 ANS Forth and Gforth memory models

... 108
5.7.2 Dictionary allocation 109
5.7.3 Heap allocation........................ 112
5.7.4 Memory Access........cooeviiiiii.... 113
5.7.5 Address arithmetic 115
5.7.6 Memory Blocks........................ 118

5.8 Control Structures.................c.ouo... 121
5.8.1 Selectionooiiiiiiiiiii.. 121
5.8.2 Simple Loops............cooiiiiiiL. 123
5.8.3 Counted Loops............cooiii.. 124
5.8.4 Arbitrary control structures............ 127

5.8.4.1 Programming Style............... 130
5.8.5 Callsand returns...................... 131
5.8.6 Exception Handling.................... 133

5.9 Defining Words. ...t 139
591 CREATE........c.iiiiiiiiiiiiinanannn.. 139
5.9.2 Variables.............. .. L 140
5.93 Constantscoiiiiiiiiiian.. 141
5.94 Values..............ooiiiiiiiiiiii 143
5.9.5 Colon Definitions...................... 144
5.9.6 Anonymous Definitions................ 144
5.9.7 Quotations............ ..o, 145
5.9.8 Supplying the name of a defined word.. 146
5.9.9 User-defined Defining Words........... 147

5.9.9.1 Applications of CREATE. .DOES> ... 152
5.9.9.2 The gory details of CREATE. .DOES>

...................................... 153

5.9.9.3 Advanced does> usage example ... 154
5.9.9.4 Const-does>..................... 157
5.9.10 Deferred Words 158

5.9.11 AlASeS ...t 161

5.10 Interpretation and Compilation Semantics

... 162
5.10.1 Combined Words 164
5.11 Tokens for Wordscoo ... 167
5.11.1 Execution token...................... 167
5.11.2 Compilation token.................... 168
5.11.3 Nametoken.......................... 169
5.12 Compiling wordso, 171
5.12.1 Literals 171
5.12.2 MaCrOS. ..ottt 173
5.13 The Text Interpreter 179
5.13.1 Input Sources 183
5.13.2 Number Conversion 185
5.13.3 Interpret/Compile states.............. 189
5.13.4 Interpreter Directives................. 189
5.14 The Input Stream......................... 191
515 Word Lists. ... 194
5.15.1 Vocabularies 198
5.15.2 Why use word lists? 199
5.15.3 Word list example.................... 201
5.16 Environmental Queries.................... 201
517 Files. ..o 204
5.17.1 Forth source files..................... 204
5.17.2 Generalfiles.......................... 206
5.17.3 Redirection........................... 208
5.17.4 Directoriesooiiiiiiiiia... 209
5.17.5 Search Paths......................... 210
5.17.5.1 Source Search Paths............. 211
5.17.5.2 General Search Paths............ 212

518 Blocks ... 213
519 Other I/O. ...t 219

5.19.1 Simple numeric output 219

5.19.2 Formatted numeric output............ 222
5.19.3 String Formats....................... 226
5.19.4 Displaying characters and strings 227
5.19.5 String words ... 231
5.19.6 Terminal output...................... 233
5.19.7 Single-key input.............. 234
5.19.8 Line input and conversion 237
5.19.9 Pipes.......oiiiiiiiiii 240
5.19.10 Xchars and Unicode................. 240
5.20 OS command line arguments 243
521 Locals.......coooiiiiiiiiiiii i 245
5.21.1 Gforthlocals......................... 245
5.21.1.1 Where are locals visible by name?
...................................... 247
5.21.1.2 How long do locals live? 251
5.21.1.3 Locals programming style........ 252
5.21.1.4 Locals implementation........... 254
5.21.2 ANS Forth locals..................... 258
5.22 SEructures.............iiiiiiiiiiii 259
5.22.1 Why explicit structure support? 259
5.22.2 Structure Usageccoooee... 262
5.22.3 Structure Naming Convention 264
5.22.4 Structure Implementation 265
5.22.5 Structure Glossary 265
5.22.6 Forth200x Structures................. 267
5.23 Object-oriented Forth 268
5.23.1 Why object-oriented programming?... 268
5.23.2 Object-Oriented Terminology......... 269
5.23.3 The objects.fs model............... 270
5.23.3.1 Properties of the objects.fs model
...................................... 271

vii

5.23.3.3 The object.fs base class........ 273
5.23.3.4 Creating objects................. 274
5.23.3.5 Object-Oriented Programming Style
...................................... 274
5.23.3.6 Class Binding 275
5.23.3.7 Method conveniences 276
5.23.3.8 Classes and Scoping 278
5.23.3.9 Dividing classes.................. 279
5.23.3.10 Object Interfaces............... 280
5.23.3.11 objects.fs Implementation.... 281
5.23.3.12 objects.fs Glossary........... 284
5.23.4 Theoof.fsmodel.................... 289
5.23.4.1 Properties of the oof.fs model.. 290
5.23.4.2 Basic oof.fs Usage 290
5.23.4.3 The oof.fs base class........... 292
5.23.4.4 Class Declaration................ 294
5.23.4.5 Class Implementation............ 295
5.23.5 Themini-oof.fs model.............. 295
5.23.5.1 Basic mini-oof.fs Usage........ 295
5.23.5.2 Mini-OOF Example 296

5.23.5.3 mini-oof.fs Implementation.... 297
5.23.6 Comparison with other object models

... 300

5.24 Programming Tools 302
5.24.1 Examining data and code............. 302
5.24.2 Forgetting words 304
5.24.3 DebuggingoiL. 305
5.24.4 Assertions.................. i 306
5.24.5 Singlestep Debugger.................. 308
525 Clnterface............cooiiiiiiiiii. 310
5.25.1 Calling C functions................... 310

5.25.2 Declaring C Functions................ 312

viii

5.25.3 Calling C function pointers from Forth

... 315
5.25.4 Defining library interfaces 316
5.25.5 Declaring OS-level libraries........... 317
5.25.6 Callbacks................ooiiiit. 318
5.25.7 How the C interface works............ 319
5.25.8 Low-Level C Interface Words 319
5.26 Assembler and Code Words................ 320
5.26.1 Definitions in assembly language...... 320
5.26.2 Common Assembler.................. 324
5.26.3 Common Disassembler................ 326
5.26.4 386 Assembler........................ 327
5.26.5 AMDG64 (x86_64) Assembler.......... 329
5.26.6 Alpha Assembler..................... 331
5.26.7 MIPS assembler...................... 331
5.26.8 PowerPC assembler................... 334
5.26.9 ARM Assembler...................... 334
5.26.10 Other assemblers.................... 337
5.27 Threading Words.......................... 338
5.28 Passing Commands to the Operating System
... 340
5.29 Keeping track of Time..................... 341
5.30 Miscellaneous Words 342
Error messages.................. 343
Tools............................. 345
7.1 ans-report.fs: Report the words used, sorted
by wordset i 345
711 Caveatscooiiiiiiiiiiinnnn. 346

7.2 Stack depth changes during interpretation .. 346

8 ANS conformance 348
8.1 The Core Words........ooviviiiiinain... 349
8.1.1 Implementation Defined Options....... 349
8.1.2 Ambiguous conditions 355
8.1.3 Other system documentation 360
8.2 The optional Block word set................ 361
8.2.1 Implementation Defined Options....... 361
8.2.2 Ambiguous conditions 362
8.2.3 Other system documentation 362
8.3 The optional Double Number word set...... 362
8.3.1 Ambiguous conditions 363
8.4 The optional Exception word set............ 363
8.4.1 Implementation Defined Options....... 363
8.5 The optional Facility word set 363
8.5.1 Implementation Defined Options....... 363
8.5.2 Ambiguous conditions 364
8.6 The optional File-Access word set 364
8.6.1 Implementation Defined Options....... 364
8.6.2 Ambiguous conditions 366
8.7 The optional Floating-Point word set 367
8.7.1 Implementation Defined Options....... 367
8.7.2 Ambiguous conditions 368
8.8 The optional Locals word set 370
8.8.1 Implementation Defined Options....... 370
8.8.2 Ambiguous conditions 370
8.9 The optional Memory-Allocation word set .. 370
8.9.1 Implementation Defined Options....... 371
8.10 The optional Programming-Tools word set
... 371
8.10.1 Implementation Defined Options...... 371
8.10.2 Ambiguous conditions 371

8.11 The optional Search-Order word set 372

8.11.1 Implementation Defined Options...... 372
8.11.2 Ambiguous conditions 373

9 Should I use Gforth extensions?

................................. 374
10 Model.......................... 377
11 Integrating Gforth into C
Programs....................... 378
12 Emacs and Gforth............. 380
12.1 Installing gforth.el............, 381
12.2 Emacs Tags 381
12.3 Hilighting o i i 382
12.4 Auto-Indentation.......................... 383
12.5 Blocks Files..........ooooiiiiiiiiiiit, 384
13 Image Files 386
13.1 Image Licensing Issues 386
13.2 Image File Background.................... 387
13.3 Non-Relocatable Image Files 389
13.4 Data-Relocatable Image Files.............. 390
13.5 Fully Relocatable Image Files.............. 390
13.5.1 gforthmi 391
13.5.2 cross.fs ... 392
13.6 Stack and Dictionary Sizes 393
13.7 Running Image Files 393

13.8 Modifying the Startup Sequence........... 395

14 Engine.......................... 398
14.1 Portability ... 398
14.2 Threading. 400

14.2.1 Scheduling 400
14.2.2 Direct or Indirect Threaded? 402
14.2.3 Dynamic Superinstructions........... 403
14.24 DOES> ... 406
14.3 Primitives. ... 406
14.3.1 Automatic Generation................ 407
14.3.2 TOS Optimization.................... 409
14.3.3 Producedcode 410
14.4 Performanceouiiiiiininn... 411

15 Cross Compiler................ 415
15.1 Using the Cross Compiler 415
15.2 How the Cross Compiler Works............ 418

Appendix A Bugs................ 419

Appendix B Authors and Ancestors

of Gforth....................... 420
B.1 Authors and Contributors.................. 420
B.2 Pedigree............ooiiiiiiiii 421

Appendix C Other Forth-related
information 423

xii

Appendix D Licenses............. 424

D.1 GNU Free Documentation License 424
D.1.1 ADDENDUM: How to use this License for

your documents................oiia.. 437

D.2 GNU GENERAL PUBLIC LICENSE...... 437

Word Index 461

Concept and Word Index.......... 482

Preface 1

Preface

This manual documents Gforth. Some introductory mate-
rial is provided for readers who are unfamiliar with Forth
or who are migrating to Gforth from other Forth compil-
ers. However, this manual is primarily a reference manual.

Chapter 1: Goals of Gforth 2

1 Goals of Gforth

The goal of the Gforth Project is to develop a standard
model for ANS Forth. This can be split into several sub-
goals:

e Gforth should conform to the ANS Forth Standard.

e It should be a model, i.e. it should define all the
implementation-dependent things.

e It should become standard, i.e. widely accepted and
used. This goal is the most difficult one.

To achieve these goals Gforth should be
e Similar to previous models (fig-Forth, F83)

e Powerful. It should provide for all the things that are
considered necessary today and even some that are not
yet considered necessary.

e Efficient. It should not get the reputation of being ex-
ceptionally slow.

e Free.

e Available on many machines/easy to port.

Have we achieved these goals? Gforth conforms to the
ANS Forth standard. It may be considered a model, but
we have not yet documented which parts of the model
are stable and which parts we are likely to change. It
certainly has not yet become a de facto standard, but it
appears to be quite popular. It has some similarities to
and some differences from previous models. It has some
powerful features, but not yet everything that we envi-
sioned. We certainly have achieved our execution speed

Chapter 1: Goals of Gforth 3

goals (see Section 14.4 [Performance], page 411)*. Tt is
free and available on many machines.

1 However, in 1998 the bar was raised when the major commercial
Forth vendors switched to native code compilers.

Chapter 2: Gforth Environment 4

2 Gforth Environment

Note: ultimately, the Gforth man page will be auto-
generated from the material in this chapter.

For related information about the creation of images
see Chapter 13 [Image Files], page 386.

2.1 Invoking Gforth

Gforth is made up of two parts; an executable “engine”
(named gforth or gforth-fast) and an image file. To
start it, you will usually just say gforth — this automat-
ically loads the default image file gforth.fi. In many
other cases the default Gforth image will be invoked like
this:

gforth [file | -e forth-codel

This interprets the contents of the files and the Forth code
in the order they are given.

In addition to the gforth engine, there is also an engine
called gforth-fast, which is faster, but gives less infor-
mative error messages (see Chapter 6 [Error messages|,
page 343) and may catch some errors (in particular, stack
underflows and integer division errors) later or not at all.
You should use it for debugged, performance-critical pro-
grams.

Moreover, there is an engine called gforth-itc, which
is useful in some backwards-compatibility situations (see
Section 14.2.2 [Direct or Indirect Threaded?], page 402).

In general, the command line looks like this:

gforth[-fast] [engine options] [image options]

Chapter 2: Gforth Environment 5

The engine options must come before the rest of the
command line. They are:

--image-file file

-i file
Loads the Forth image file instead of the default
gforth.fi (see Chapter 13 [Image Files|, page 386).

-—appl-image file
Loads the image file and leaves all further command-
line arguments to the image (instead of processing them
as engine options). This is useful for building exe-
cutable application images on Unix, built with gforthmi
--application

--path path

-p path
Uses path for searching the image file and Forth source
code files instead of the default in the environment vari-
able GFORTHPATH or the path specified at installation time
(e.g., /usr/local/share/gforth/0.2.0:.). A path is
given as a list of directories, separated by ‘:’ (on Unix)
or ‘;’ (on other OSs).

--dictionary-size size

-m size
Allocate size space for the Forth dictionary space in-
stead of using the default specified in the image (typically
256K). The size specification for this and subsequent op-
tions consists of an integer and a unit (e.g., 4M). The
unit can be one of b (bytes), e (element size, in this case
Cells), k (kilobytes), M (Megabytes), G (Gigabytes), and
T (Terabytes). If no unit is specified, e is used.

Chapter 2: Gforth Environment 6

-—-data-stack-size size

-d size
Allocate size space for the data stack instead of using
the default specified in the image (typically 16K).

--return-stack-size size

-r size
Allocate size space for the return stack instead of using
the default specified in the image (typically 15K).

—-—fp-stack-size size

-f size
Allocate size space for the floating point stack instead of
using the default specified in the image (typically 15.5K).
In this case the unit specifier e refers to floating point
numbers.

--locals-stack-size size

-1 size
Allocate size space for the locals stack instead of using
the default specified in the image (typically 14.5K).

—--vm-commit

Normally, Gforth tries to start up even if there is not
enough virtual memory for the dictionary and the stacks
(using MAP_NORESERVE on OSs that support it); so you
can ask for a really big dictionary and/or stacks, and
as long as you don’t use more virtual memory than is
available, everything will be fine (but if you use more,
processes get killed). With this option you just use the
default allocation policy of the OS; for OSs that don’t
overcommit (e.g., Solaris), this means that you cannot
and should not ask for as big dictionary and stacks, but
once Gforth successfully starts up, out-of-memory won’t
kill it.

Chapter 2: Gforth Environment 7

--help
-h
Print a message about the command-line options

—--version
-v
Print version and exit

--debug
Print some information useful for debugging on startup.

--offset-image
Start the dictionary at a slightly different position
than would be used otherwise (useful for creating data-
relocatable images, see Section 13.4 [Data-Relocatable
Image Files], page 390).

--no-offset-im
Start the dictionary at the normal position.

-—-clear—-dictionary
Initialize all bytes in the dictionary to 0 before load-
ing the image (see Section 13.4 [Data-Relocatable Image
Files], page 390).

--die-on-signal

Normally Gforth handles most signals (e.g., the user
interrupt SIGINT, or the segmentation violation
SIGSEGV) by translating it into a Forth THROW. With
this option, Gforth exits if it receives such a signal. This
option is useful when the engine and/or the image might
be severely broken (such that it causes another signal
before recovering from the first); this option avoids
endless loops in such cases.

Chapter 2: Gforth Environment 8

--no-dynamic

--dynamic
Disable or enable dynamic superinstructions with repli-
cation (see Section 14.2.3 [Dynamic Superinstructions],
page 403).

--no-super
Disable dynamic superinstructions, use just dynamic
replication; this is useful if you want to patch threaded
code (see Section 14.2.3 [Dynamic Superinstructions],
page 403).

—-—ss—number=N
Use only the first N static superinstructions compiled
into the engine (default: use them all; note that only
gforth-fast has any). This option is useful for measur-
ing the performance impact of static superinstructions.

--ss-min-codesize

--ss-min-1ls

--ss-min-1su

--ss-min-nexts
Use specified metric for determining the cost of a primi-
tive or static superinstruction for static superinstruction
selection. Codesize is the native code size of the prim-
ive or static superinstruction, 1s is the number of loads
and stores, 1su is the number of loads, stores, and up-
dates, and nexts is the number of dispatches (not tak-
ing dynamic superinstructions into account), i.e. every
primitive or static superinstruction has cost 1. Default:
codesize if you use dynamic code generation, otherwise
nexts.

Chapter 2: Gforth Environment 9

--ss-greedy

This option is useful for measuring the performance im-
pact of static superinstructions. By default, an optimal
shortest-path algorithm is used for selecting static su-
perinstructions. With --ss-greedy this algorithm is
modified to assume that anything after the static su-
perinstruction currently under consideration is not com-
bined into static superinstructions. With --ss-min-
nexts this produces the same result as a greedy algo-
rithm that always selects the longest superinstruction
available at the moment. E.g., if there are superinstruc-
tions AB and BCD, then for the sequence A B C D the
optimal algorithm will select A BCD and the greedy al-
gorithm will select AB C D.

—--print-metrics

Prints some metrics used during static superinstruction
selection: code size is the actual size of the dynami-
cally generated code. Metric codesize is the sum of the
codesize metrics as seen by static superinstruction selec-
tion; there is a difference from code size, because not
all primitives and static superinstructions are compiled
into dynamically generated code, and because of mark-
ers. The other metrics correspond to the ss-min-...
options. This option is useful for evaluating the effects
of the --ss-. .. options.

As explained above, the image-specific command-line
arguments for the default image gforth.fi consist of a
sequence of filenames and -e forth-code options that are
interpreted in the sequence in which they are given. The -e
forth-code or --evaluate forth-code option evaluates
the Forth code. This option takes only one argument; if
you want to evaluate more Forth words, you have to quote

Chapter 2: Gforth Environment 10

them or use -e several times. To exit after processing
the command line (instead of entering interactive mode)
append -e bye to the command line. You can also process
the command-line arguments with a Forth program (see
Section 5.20 [OS command line arguments], page 243).

If you have several versions of Gforth installed, gforth
will invoke the version that was installed last. gforth-
version invokes a specific version. If your environment
contains the variable GFORTHPATH, you may want to over-
ride it by using the —-path option.

Not yet implemented: On startup the system first exe-
cutes the system initialization file (unless the option -—no-
init-file is given; note that the system resulting from us-
ing this option may not be ANS Forth conformant). Then
the user initialization file .gforth.fs is executed, unless
the option --no-rc is given; this file is searched for in .,
then in ~, then in the normal path (see above).

2.2 Leaving Gforth

You can leave Gforth by typing bye or Ctrl-d (at the
start of a line) or (if you invoked Gforth with the --die-
on-signal option) Ctrl-c. When you leave Gforth, all
of your definitions and data are discarded. For ways of
saving the state of the system before leaving Gforth see
Chapter 13 [Image Files], page 386.

bye - tools-ext “bye”
Return control to the host operating system (if any).

2.3 Command-line editing

Gforth maintains a history file that records every line that
you type to the text interpreter. This file is preserved

Chapter 2: Gforth Environment 11

between sessions, and is used to provide a command-line
recall facility; if you type Ctrl-P repeatedly you can re-
call successively older commands from this (or previous)
session(s). The full list of command-line editing facilities

1S:

Ctrl-p (“previous”) (or up-arrow) to recall successively
older commands from the history buffer.

Ctrl-n (“next”) (or down-arrow) to recall successively
newer commands from the history buffer.

Ctrl-f (or right-arrow) to move the cursor right, non-
destructively.

Ctrl-b (or left-arrow) to move the cursor left, non-
destructively.

Ctrl-h (backspace) to delete the character to the left
of the cursor, closing up the line.

Ctrl-k to delete (“kill”) from the cursor to the end of
the line.

Ctrl-a to move the cursor to the start of the line.
Ctrl-e to move the cursor to the end of the line.

RET (Ctrl-m) or LFD (Ctrl-j) to submit the current
line.

TAB to step through all possible full-word completions
of the word currently being typed.

Ctrl-d on an empty line line to terminate Gforth
(gracefully, using bye).

Ctrl-x (or Ctrl-d on a non-empty line) to delete the
character under the cursor.

When editing, displayable characters are inserted to the

left of the cursor position; the line is always in “insert” (as
opposed to “overstrike”) mode.

Chapter 2: Gforth Environment 12

On Unix systems, the history file is “/.gforth-
history by default!. You can find out the name and
location of your history file using:

history-file type \ Unix-class systems

history-file type \ Other systems
history-dir type

If you enter long definitions by hand, you can use a
text editor to paste them out of the history file into a
Forth source file for reuse at a later time.

Gforth never trims the size of the history file, so you
should do this periodically, if necessary.

2.4 Environment variables

Gforth uses these environment variables:

e GFORTHHIST — (Unix systems only) specifies the direc-
tory in which to open/create the history file, .gforth-
history. Default: $HOME.

e GFORTHPATH — specifies the path used when searching
for the gforth image file and for Forth source-code files.

e LANG — see LC_CTYPE
e LC_ALL — see LC_CTYPE

e LC_CTYPE — If this variable contains “UTF-8" on Gforth
startup, Gforth uses the UTF-8 encoding for strings
internally and expects its input and produces its output
in UTF-8 encoding, otherwise the encoding is 8bit (see
see Section 5.19.10 [Xchars and Unicode], page 240).
If this environment variable is unset, Gforth looks in
LC_ALL, and if that is unset, in LANG.

1 j.e. it is stored in the user’s home directory.

Chapter 2: Gforth Environment 13

GFORTHSYSTEMPREFIX — specifies what to prepend
to the argument of system before passing it to C’s
system(). Default: "./$COMSPEC /c " on Windows,
"" on other OSs. The prefix and the command are
directly concatenated, so if a space between them is
necessary, append it to the prefix.

GFORTH — used by gforthmi, See Section 13.5.1
[gforthmi], page 391.

GFORTHD — used by gforthmi, See Section 13.5.1
[gforthmi], page 391.

TMP, TEMP - (non-Unix systems only) used as a potential
location for the history file.

All the Gforth environment variables default to sensible

values if they are not set.

2.5 Gforth files

When you install Gforth on a Unix system, it installs files
in these locations by default:

/usr/local/bin/gforth
/usr/local/bin/gforthmi
/usr/local/man/manl/gforth.1 - man page.
/usr/local/info - the Info version of this manual.

/usr/local/lib/gforth/<version>/... - Gforth .fi
files.

/usr/local/share/gforth/<version>/TAGS - Emacs
TAGS file.

/usr/local/share/gforth/<version>/... - Gforth
source files.

Chapter 2: Gforth Environment 14

e .../emacs/site-lisp/gforth.el - Emacs gforth
mode.

You can select different places for installation by using
configure options (listed with configure --help).

2.6 Gforth in pipes

Gforth can be used in pipes created elsewhere (described
here). It can also create pipes on its own (see Section 5.19.9
[Pipes], page 240).

If you pipe into Gforth, your program should read with
read-file or read-line from stdin (see Section 5.17.2
[General files|, page 206). Key does not recognize the end
of input. Words like accept echo the input and are there-
fore usually not useful for reading from a pipe. You have
to invoke the Forth program with an OS command-line
option, as you have no chance to use the Forth command
line (the text interpreter would try to interpret the pipe
input).

You can output to a pipe with type, emit, cr etc.

When you write to a pipe that has been closed at the
other end, Gforth receives a SIGPIPE signal (“pipe bro-
ken”). Gforth translates this into the exception broken-
pipe-error. If your application does not catch that ex-
ception, the system catches it and exits, usually silently
(unless you were working on the Forth command line; then
it prints an error message and exits). This is usually the
desired behaviour.

If you do not like this behaviour, you have to catch the
exception yourself, and react to it.

Here’s an example of an invocation of Gforth that is
usable in a pipe:

Chapter 2: Gforth Environment 15

gforth -e ": foo begin pad dup 10 stdin read-file
type repeat ; foo bye"

This example just copies the input verbatim to the out-
put. A very simple pipe containing this example looks like
this:
cat startup.fs |
gforth -e ": foo begin pad dup 80 stdin read-file

type repeat ; foo bye"|
head

Pipes involving Gforth’s stderr output do not work.

2.7 Startup speed

If Gforth is used for CGI scripts or in shell scripts, its
startup speed may become a problem. On a 3GHz Core
2 Duo E8400 under 64-bit Linux 2.6.27.8 with libc-2.7,
gforth-fast -e bye takes 13.1ms user and 1.2ms system
time (gforth -e bye is faster on startup with about 3.4ms
user time and 1.2ms system time, because it subsumes
some of the options discussed below).

If startup speed is a problem, you may consider the
following ways to improve it; or you may consider ways
to reduce the number of startups (for example, by using
Fast-CGI). Note that the first steps below improve the
startup time at the cost of run-time (including compile-
time), so whether they are profitable depends on the bal-
ance of these times in your application.

An easy step that influences Gforth startup speed is
the use of a number of options that increase run-time, but
decrease image-loading time.

The first of these that you should try is -—ss-number=0
--ss-states=1 because this option buys relatively lit-

Chapter 2: Gforth Environment 16

tle run-time speedup and costs quite a bit of time at
startup. gforth-fast --ss-number=0 --ss-states=1 -
e bye takes about 2.8ms user and 1.5ms system time.

The next option is --no-dynamic which has a sub-
stantial impact on run-time (about a factor of 2 on sev-
eral platforms), but still makes startup speed a little
faster: gforth-fast —-ss-number=0 --ss-states=1 —-
no-dynamic -e bye consumes about 2.6ms user and 1.2ms
system time.

The next step to improve startup speed is to use a data-
relocatable image (see Section 13.4 [Data-Relocatable Tm-
age Files], page 390). This avoids the relocation cost for
the code in the image (but not for the data). Note that the
image is then specific to the particular binary you are using
(i.e., whether it is gforth, gforth-fast, and even the par-
ticular build). You create the data-relocatable image that
works with ./gforth-fast with GFORTHD="./gforth-
fast --no-dynamic" gforthmi gforthdr.fi (the --no-
dynamic is required here or the image will not work). And
you run it with gforth-fast -i gforthdr.fi ... -e bye
(the flags discussed above don’t matter here, because they
only come into play on relocatable code). gforth-fast -
i gforthdr.fi -e bye takes about 1.1ms user and 1.2ms
system time.

One step further is to avoid all relocation cost and part
of the copy-on-write cost through using a non-relocatable
image (see Section 13.3 [Non-Relocatable Image Files],
page 389). However, this has the disadvantage that it
does not work on operating systems with address space
randomization (the default in, e.g., Linux nowadays), or if
the dictionary moves for any other reason (e.g., because of
a change of the OS kernel or an updated library), so we

Chapter 2: Gforth Environment 17

cannot really recommend it. You create a non-relocatable
image with gforth-fast ——-no-dynamic -e "savesystem
gforthnr.fi bye" (the --no-dynamic is required here,
too). And you run it with gforth-fast -i gforthnr.fi

. —e bye (again the flags discussed above don’t matter).
gforth-fast -i gforthdr.fi -e bye takes about 0.9ms
user and 0.9ms system time.

If the script you want to execute contains a significant

amount of code, it may be profitable to compile it into the
image to avoid the cost of compiling it at startup time.

Chapter 3: Forth Tutorial 18

3 Forth Tutorial

The difference of this chapter from the Introduction (see
Chapter 4 [Introduction], page 68) is that this tutorial is
more fast-paced, should be used while sitting in front of a
computer, and covers much more material, but does not
explain how the Forth system works.

This tutorial can be used with any ANS-compliant
Forth; any Gforth-specific features are marked as such and
you can skip them if you work with another Forth. This
tutorial does not explain all features of Forth, just enough
to get you started and give you some ideas about the facil-
ities available in Forth. Read the rest of the manual when
you are through this.

The intended way to use this tutorial is that you work
through it while sitting in front of the console, take a look
at the examples and predict what they will do, then try
them out; if the outcome is not as expected, find out why
(e.g., by trying out variations of the example), so you un-
derstand what’s going on. There are also some assignments
that you should solve.

This tutorial assumes that you have programmed be-
fore and know what, e.g., a loop is.

3.1 Starting Gforth

You can start Gforth by typing its name:
gforth

That puts you into interactive mode; you can leave
Gforth by typing bye. While in Gforth, you can edit the
command line and access the command line history with
cursor keys, similar to bash.

Chapter 3: Forth Tutorial 19
3.2 Syntax

A word is a sequence of arbitrary characters (except white
space). Words are separated by white space. E.g., each of
the following lines contains exactly one word:

word
ro#$%~&x* ()
1234567890
5la

A frequent beginner’s error is to leave out necessary
white space, resulting in an error like ‘Undefined word’;
so if you see such an error, check if you have put spaces
wherever necessary.

." hello, world" \ correct
."hello, world" \ gives an "Undefined word" errc

Gforth and most other Forth systems ignore differences
in case (they are case-insensitive), i.e., ‘word’ is the same
as ‘Word’. If your system is case-sensitive, you may have
to type all the examples given here in upper case.

3.3 Crash Course

Forth does not prevent you from shooting yourself in the
foot. Let’s try a few ways to crash Gforth:

00!

here execute

> catch >body 20 erase abort
> (quit) >body 20 erase

The last two examples are guaranteed to destroy im-
portant parts of Gforth (and most other systems), so you
better leave Gforth afterwards (if it has not finished by

Chapter 3: Forth Tutorial 20

itself). On some systems you may have to kill gforth from
outside (e.g., in Unix with kill).
You will find out later what these lines do and then you

will get an idea why they produce crashes.

Now that you know how to produce crashes (and that
there’s not much to them), let’s learn how to produce
meaningful programs.

3.4 Stack

The most obvious feature of Forth is the stack. When
you type in a number, it is pushed on the stack. You can
display the contents of the stack with .s.

12 .s
3 .8

.s displays the top-of-stack to the right, i.e., the num-
bers appear in .s output as they appeared in the input.

You can print the top element of the stack with ..
123 .

In general, words consume their stack arguments (.s is
an exception).

Assignment: What does the stack contain after 5 6 7 .7

3.5 Arithmetics

The words +, -, *, /, and mod always operate on the top
two stack items:

2 2 .s
+ .8

Chapter 3: Forth Tutorial 21
7 3 mod .

The operands of -, /, and mod are in the same order as
in the corresponding infix expression (this is generally the
case in Forth).

Parentheses are superfluous (and not available), be-
cause the order of the words unambiguously determines
the order of evaluation and the operands:

34+ 5 % .
345 %+ .

Assignment: What are the infix expressions corresponding
to the Forth code above? Write 6-7x8+9 in Forth nota-
tion®.

To change the sign, use negate:
2 negate .
Assignment: Convert -(-3)*4-5 to Forth.

/mod performs both / and mod.
7 3 /mod .

Reference: Section 5.5 [Arithmetic|, page 95.

3.6 Stack Manipulation

Stack manipulation words rearrange the data on the stack.

1 .s drop .s

1 .s dup .s drop drop .s

1 2 .s over .s drop drop drop
1 2 .s swap .s drop drop

1 23 .s rot .s drop drop drop

1 This notation is also known as Postfix or RPN (Reverse Polish
Notation).

Chapter 3: Forth Tutorial 22

These are the most important stack manipulation
words. There are also variants that manipulate twice as
many stack items:

1234 .s 2swap .s 2drop 2drop
Two more stack manipulation words are:
1 2 .s nip .s drop
1 2 .s tuck .s 2drop drop
Assignment: Replace nip and tuck with combinations of
other stack manipulation words.

Given: How do you get:
123 321

123 1232
123 1233
123 133

123 213
1234 4321
123 123123
1234 123412
123

123 1234
123 13

5 dup * .

Assignment: Write 1773 and 1774 in Forth, without writ-
ing 17 more than once. Write a piece of Forth code that
expects two numbers on the stack (a and b, with b on top)
and computes (a-b) (a+1).

Reference: Section 5.6 [Stack Manipulation], page 105.

3.7 Using files for Forth code

While working at the Forth command line is convenient
for one-line examples and short one-off code, you proba-

Chapter 3: Forth Tutorial 23

bly want to store your source code in files for convenient
editing and persistence. You can use your favourite editor
(Gforth includes Emacs support, see Chapter 12 [Emacs
and Gforth], page 380) to create file.fs and use

s" file.fs" included

to load it into your Forth system. The file name exten-
sion I use for Forth files is ‘. fs’.

You can easily start Gforth with some files loaded like
this:
gforth filel.fs file2.fs

If an error occurs during loading these files, Gforth ter-
minates, whereas an error during INCLUDED within Gforth
usually gives you a Gforth command line. Starting the

Forth system every time gives you a clean start every time,
without interference from the results of earlier tries.

I often put all the tests in a file, then load the code and
run the tests with

gforth code.fs tests.fs -e bye

(often by performing this command with C-x C-e in
Emacs). The -e bye ensures that Gforth terminates af-
terwards so that I can restart this command without ado.

The advantage of this approach is that the tests can
be repeated easily every time the program ist changed,
making it easy to catch bugs introduced by the change.

Reference: Section 5.17.1 [Forth source files], page 204.

3.8 Comments

\ That’s a comment; it ends at the end of the lin
(Another comment; it ends here:) .s

Chapter 3: Forth Tutorial 24

\ and (are ordinary Forth words and therefore have to
be separated with white space from the following text.

\This gives an "Undefined word" error

The first) ends a comment started with (, so you can-
not nest (-comments; and you cannot comment out text
containing a) with (...)%

I use \-comments for descriptive text and for comment-
ing out code of one or more line; I use (-comments for
describing the stack effect, the stack contents, or for com-
menting out sub-line pieces of code.

The Emacs mode gforth.el (see Chapter 12 [Emacs
and Gforth], page 380) supports these uses by commenting
out a region with C-x \, uncommenting a region with C-u
C-x \, and filling a \-commented region with M-q.

Reference: Section 5.3 [Comments], page 94.

3.9 Colon Definitions

are similar to procedures and functions in other program-
ming languages.
: squared (n -- n"2)
dup * ;
5 squared .
7 squared .

: starts the colon definition; its name is squared. The
following comment describes its stack effect. The words
dup * are not executed, but compiled into the definition.
; ends the colon definition.

The newly-defined word can be used like any other
word, including using it in other definitions:

2 therefore it’s a good idea to avoid) in word names.

Chapter 3: Forth Tutorial 25

: cubed (n -- n"3)

dup squared * ;
-5 cubed .
: fourth-power (n -- n"4)

squared squared ;
3 fourth-power .
Assignment: Write colon definitions for nip, tuck,
negate, and /mod in terms of other Forth words, and
check if they work (hint: test your tests on the originals
first). Don’t let the ‘redefined’-Messages spook you,
they are just warnings.

Reference: Section 5.9.5 [Colon Definitions], page 144.

3.10 Decompilation

You can decompile colon definitions with see:

see squared
see cubed

In Gforth see shows you a reconstruction of the source
code from the executable code. Informations that were
present in the source, but not in the executable code, are
lost (e.g., comments).

You can also decompile the predefined words:

see .
see +

3.11 Stack-Effect Comments

By convention the comment after the name of a definition
describes the stack effect: The part in front of the ‘-’
describes the state of the stack before the execution of
the definition, i.e., the parameters that are passed into the

Chapter 3: Forth Tutorial 26

colon definition; the part behind the ‘==’ is the state of the
stack after the execution of the definition, i.e., the results
of the definition. The stack comment only shows the top
stack items that the definition accesses and/or changes.

You should put a correct stack effect on every defini-
tion, even if it is just (==). You should also add some
descriptive comment to more complicated words (I usu-
ally do this in the lines following :). If you don’t do this,
your code becomes unreadable (because you have to work
through every definition before you can understand any).

Assignment: The stack effect of swap can be written like
this: x1 x2 -- x2 x1. Describe the stack effect of -, drop,
dup, over, rot, nip, and tuck. Hint: When you are done,
you can compare your stack effects to those in this manual
(see [Word Index], page 461).

Sometimes programmers put comments at various
places in colon definitions that describe the contents of
the stack at that place (stack comments); i.e., they are
like the first part of a stack-effect comment. E.g.,

: cubed (n -- n"3)
dup squared (n n"2) * ;

In this case the stack comment is pretty superfluous,
because the word is simple enough. If you think it would
be a good idea to add such a comment to increase readabil-
ity, you should also consider factoring the word into sev-
eral simpler words (see Section 3.13 [Factoring], page 29),
which typically eliminates the need for the stack comment;
however, if you decide not to refactor it, then having such
a comment is better than not having it.

The names of the stack items in stack-effect and stack
comments in the standard, in this manual, and in many

Chapter 3: Forth Tutorial 27

programs specify the type through a type prefix, similar
to Fortran and Hungarian notation. The most frequent
prefixes are:

n
signed integer

u
unsigned integer

c
character

f
Boolean flags, i.e. false or true.

a-addr,a-
Cell-aligned address

c-addr,c-
Char-aligned address (note that a Char may have two
bytes in Windows NT)

xt
Execution token, same size as Cell

W,X
Cell, can contain an integer or an address. It usually
takes 32, 64 or 16 bits (depending on your platform and
Forth system). A cell is more commonly known as ma-
chine word, but the term word already means something
different in Forth.

d
signed double-cell integer

ud
unsigned double-cell integer

Chapter 3: Forth Tutorial 28

r
Float (on the FP stack)

You can find a more complete list in Section 5.1 [Nota-
tion], page 90.

Assignment: Write stack-effect comments for all defini-
tions you have written up to now.

3.12 Types

In Forth the names of the operations are not overloaded; so
similar operations on different types need different names;
e.g., + adds integers, and you have to use f+ to add
floating-point numbers. The following prefixes are often
used for related operations on different types:

(none)
signed integer

u
unsigned integer

c
character

d
signed double-cell integer

ud, du
unsigned double-cell integer

2
two cells (not-necessarily double-cell numbers)

m, um
mixed single-cell and double-cell operations

Chapter 3: Forth Tutorial 29

f
floating-point (note that in stack comments ‘f’ repre-
sents flags, and ‘r’ represents FP numbers; also, you need
to include the exponent part in literal FP numbers, see
Section 3.26 [Floating Point Tutorial], page 46).

If there are no differences between the signed and the
unsigned variant (e.g., for +), there is only the prefix-less
variant.

Forth does not perform type checking, neither at com-
pile time, nor at run time. If you use the wrong operation,
the data are interpreted incorrectly:

-1 u.

If you have only experience with type-checked lan-
guages until now, and have heard how important type-
checking is, don’t panic! In my experience (and that of
other Forthers), type errors in Forth code are usually easy
to find (once you get used to it), the increased vigilance
of the programmer tends to catch some harder errors in
addition to most type errors, and you never have to work
around the type system, so in most situations the lack
of type-checking seems to be a win (projects to add type
checking to Forth have not caught on).

3.13 Factoring

If you try to write longer definitions, you will soon find it
hard to keep track of the stack contents. Therefore, good
Forth programmers tend to write only short definitions
(e.g., three lines). The art of finding meaningful short
definitions is known as factoring (as in factoring polyno-
mials).

Chapter 3: Forth Tutorial 30

Well-factored programs offer additional advantages:
smaller, more general words, are easier to test and debug
and can be reused more and better than larger, specialized
words.

So, if you run into difficulties with stack management,
when writing code, try to define meaningful factors for
the word, and define the word in terms of those. Even if
a factor contains only two words, it is often helpful.

Good factoring is not easy, and it takes some practice
to get the knack for it; but even experienced Forth pro-
grammers often don’t find the right solution right away,
but only when rewriting the program. So, if you don’t
come up with a good solution immediately, keep trying,
don’t despair.

3.14 Designing the stack effect

In other languages you can use an arbitrary order of pa-
rameters for a function; and since there is only one result,
you don’t have to deal with the order of results, either.

In Forth (and other stack-based languages, e.g., Post-
Script) the parameter and result order of a definition is im-
portant and should be designed well. The general guideline
is to design the stack effect such that the word is simple
to use in most cases, even if that complicates the imple-
mentation of the word. Some concrete rules are:

e Words consume all of their parameters (e.g., .).

e If there is a convention on the order of parameters (e.g.,
from mathematics or another programming language),
stick with it (e.g., -).

e If one parameter usually requires only a short compu-
tation (e.g., it is a constant), pass it on the top of the

Chapter 3: Forth Tutorial 31

stack. Conversely, parameters that usually require a
long sequence of code to compute should be passed as
the bottom (i.e., first) parameter. This makes the code
easier to read, because the reader does not need to keep
track of the bottom item through a long sequence of
code (or, alternatively, through stack manipulations).
E.g., ! (store, see Section 5.7 [Memory|, page 108) ex-
pects the address on top of the stack because it is usu-
ally simpler to compute than the stored value (often
the address is just a variable).

e Similarly, results that are usually consumed quickly
should be returned on the top of stack, whereas a re-
sult that is often used in long computations should be
passed as bottom result. E.g., the file words like open-
file return the error code on the top of stack, because
it is usually consumed quickly by throw; moreover, the
error code has to be checked before doing anything with
the other results.

These rules are just general guidelines, don’t lose sight
of the overall goal to make the words easy to use. E.g., if
the convention rule conflicts with the computation-length
rule, you might decide in favour of the convention if the
word will be used rarely, and in favour of the computation-
length rule if the word will be used frequently (because
with frequent use the cost of breaking the computation-
length rule would be quite high, and frequent use makes
it easier to remember an unconventional order).

3.15 Local Variables

You can define local variables (locals) in a colon definition:

:swap{ab--batl

Chapter 3: Forth Tutorial 32

b a;
1 2 swap .s 2drop

(If your Forth system does not support this syntax,
include compat/anslocal.fs first).

In this example { a b -- b a } is the locals definition;
it takes two cells from the stack, puts the top of stack in
b and the next stack element in a. -- starts a comment
ending with }. After the locals definition, using the name
of the local will push its value on the stack. You can leave
the comment part (-- b a) away:

: swap (x1 x2 -- x2 x1)
{abl}ba;

In Gforth you can have several locals definitions, any-
where in a colon definition; in contrast, in a standard pro-
gram you can have only one locals definition per colon
definition, and that locals definition must be outside any
control structure.

With locals you can write slightly longer definitions
without running into stack trouble. However, I recom-
mend trying to write colon definitions without locals for
exercise purposes to help you gain the essential factoring
skills.

Assignment: Rewrite your definitions until now with locals

Reference: Section 5.21 [Locals|, page 245.

3.16 Conditional execution
In Forth you can use control structures only inside colon
definitions. An if-structure looks like this:

: abs (nl -- +n2)
dup 0 < if

Chapter 3: Forth Tutorial 33

negate
endif ;
5 abs .
-5 abs .

if takes a flag from the stack. If the flag is non-zero
(true), the following code is performed, otherwise execu-
tion continues after the endif (or else). < compares the
top two stack elements and produces a flag:

=N -
= o= N
AN AN A

Actually the standard name for endif is then. This
tutorial presents the examples using endif, because this
is often less confusing for people familiar with other pro-
gramming languages where then has a different meaning.
If your system does not have endif, define it with

: endif postpone then ; immediate
You can optionally use an else-part:

:min (n1 n2 -— n)
2dup < if
drop
else
nip
endif ;
2 3 min .
3 2 min .

Assignment: Write min without else-part (hint: what’s
the definition of nip?).

Reference: Section 5.8.1 [Selection], page 121.

Chapter 3: Forth Tutorial 34

3.17 Flags and Comparisons

In a false-flag all bits are clear (0 when interpreted as in-
teger). In a canonical true-flag all bits are set (-1 as a
twos-complement signed integer); in many contexts (e.g.,
if) any non-zero value is treated as true flag.

false .
true .
true hex u. decimal

Comparison words produce canonical flags:

O =

O O = =
O -

<.

<.

-1 1 u< . \ type error, u< interprets -1 as large
-11< .

Gforth supports all combinations of the prefixes 0 u
d d0 du f fO (or none) and the comparisons = <> < > <=
>=. Only a part of these combinations are standard (for
details see the standard, Section 5.5.4 [Numeric compari-
son], page 98, Section 5.5.6 [Floating Point], page 100 or
[Word Index]|, page 461).

You can use and or xor invert as operations on

canonical flags. Actually they are bitwise operations:

1 2 and .
1 2o0r .
1 3 xor .
1 invert .
You can convert a zero/non-zero flag into a canonical
flag with 0<> (and complement it on the way with 0=).

1 0= .

Chapter 3: Forth Tutorial 35
1 0<> .

You can use the all-bits-set feature of canonical flags
and the bitwise operation of the Boolean operations to
avoid ifs:

: foo (n1 -- n2)
0= if
14
else
0
endif ;
0 foo .
1 foo .

: foo (n1 -- n2)
0= 14 and ;

0 foo .

1 foo .

Assignment: Write min without if.

For reference, see Section 5.4 [Boolean Flags|, page 94,
Section 5.5.4 [Numeric comparison], page 98, and
Section 5.5.3 [Bitwise operations|, page 97.

3.18 General Loops

The endless loop is the most simple one:

: endless (--)
0 begin
dup . 1+
again ;
endless

Chapter 3: Forth Tutorial 36

Terminate this loop by pressing Ctrl-C (in Gforth).
begin does nothing at run-time, again jumps back to
begin.

A loop with one exit at any place looks like this:

: log2 (+n1 -- n2)
\ logarithmus dualis of n1>0, rounded down to the
assert(dup 0>)

2/ 0 begin

over 0> while
1+ swap 2/ swap
repeat

nip ;

7 log2 .
8 log2 .

At run-time while consumes a flag; if it is 0, execution
continues behind the repeat; if the flag is non-zero, exe-
cution continues behind the while. Repeat jumps back to
begin, just like again.

In Forth there are a number of combina-
tions/abbreviations, like 1+. However, 2/ is not
one of them; it shifts its argument right by one bit
(arithmetic shift right), and viewed as division that
always rounds towards negative infinity (floored division).
In contrast, / rounds towards zero on some systems (not
on default installations of gforth (>=0.7.0), however).

-52/ .\ -2or -3
-52/ . \ -3
assert (is no standard word, but you can get it on sys-

tems other than Gforth by including compat/assert.fs.
You can see what it does by trying

0 log2 .

Chapter 3: Forth Tutorial 37

Here’s a loop with an exit at the end:

: log2 (+nl -- n2)
\ logarithmus dualis of nl1>0, rounded down to the
assert(dup 0 >)
-1 begin
1+ swap 2/ swap
over 0 <=
until
nip ;
Until consumes a flag; if it is zero, execution continues
at the begin, otherwise after the until.

Assignment: Write a definition for computing the greatest
common divisor.

Reference: Section 5.8.2 [Simple Loops], page 123.

3.19 Counted loops

: " (nlu--n)
\ n = the uth power of nil

1 swap O u+do

over *
loop
nip ;
327
43"

U+do (from compat/loops.fs, if your Forth system
doesn’t have it) takes two numbers of the stack (u3 u4
--), and then performs the code between u+do and loop
for u3-u4 times (or not at all, if u3-u4<0).

You can see the stack effect design rules at work in the
stack effect of the loop start words: Since the start value

Chapter 3: Forth Tutorial 38

of the loop is more frequently constant than the end value,
the start value is passed on the top-of-stack.

You can access the counter of a counted loop with i:

: fac (u -- u!)
1 swap 1+ 1 ut+do
i *
loop ;
5 fac .
7 fac .

There is also +do, which expects signed numbers (im-
portant for deciding whether to enter the loop).

Assignment: Write a definition for computing the nth Fi-
bonacci number.

You can also use increments other than 1:
:up2 (nl n2 --)
+do
i
2 +loop ;
10 0 up2

: down2 (n1 n2 --)
-do
i,
2 -loop ;
0 10 down2

Reference: Section 5.8.3 [Counted Loops|, page 124.

3.20 Recursion

Usually the name of a definition is not visible in the defi-
nition; but earlier definitions are usually visible:

Chapter 3: Forth Tutorial 39

10/ . \ "Floating-point unidentified fault" in
:/ (nln2 --n)
dup 0= if
-10 throw \ report division by zero
endif
/ \ old version

10/

For recursive definitions you can use recursive (non-
standard) or recurse:

: facl (n -- n!) recursive
dup 0> if
dup 1- facl *
else
drop 1
endif ;
7 facl

: fac2 (n -- n!)
dup 0> if
dup 1- recurse *
else
drop 1
endif ;
8 fac2 .

Assignment: Write a recursive definition for computing
the nth Fibonacci number.

Reference (including indirect recursion): See
Section 5.8.5 [Calls and returns|, page 131.

Chapter 3: Forth Tutorial 40

3.21 Leaving definitions or loops

EXIT exits the current definition right away. For every
counted loop that is left in this way, an UNLOOP has to be
performed before the EXIT:

. ut+do
if
. unloop exit
endif
loop

LEAVE leaves the innermost counted loop right away:

. utdo
if
. leave
endif
loop

Reference: Section 5.8.5 [Calls and returns], page 131,
Section 5.8.3 [Counted Loops|, page 124.

3.22 Return Stack

In addition to the data stack Forth also has a second stack,
the return stack; most Forth systems store the return ad-
dresses of procedure calls there (thus its name). Program-
mers can also use this stack:

: foo (nl1 n2 ——)

Chapter 3: Forth Tutorial 41

.S
>r .S
r@ .
>r .s
r@ .
r> .
r@ .
r> .
1 2 foo

>r takes an element from the data stack and pushes it
onto the return stack; conversely, r> moves an elementm
from the return to the data stack; r@ pushes a copy of the
top of the return stack on the data stack.

Forth programmers usually use the return stack for
storing data temporarily, if using the data stack alone
would be too complex, and factoring and locals are not
an option:

: 2swap (x1 x2 x3 x4 -- x3 x4 x1 x2)
rot >r rot r> ;

The return address of the definition and the loop con-
trol parameters of counted loops usually reside on the re-
turn stack, so you have to take all items, that you have
pushed on the return stack in a colon definition or counted
loop, from the return stack before the definition or loop
ends. You cannot access items that you pushed on the
return stack outside some definition or loop within the
definition of loop.

If you miscount the return stack items, this usually ends
in a crash:

: crash (n —-)
>ro;

Chapter 3: Forth Tutorial 42

5 crash

You cannot mix using locals and using the return stack
(according to the standard; Gforth has no problem). How-
ever, they solve the same problems, so this shouldn’t be
an issue.
Assignment: Can you rewrite any of the definitions you
wrote until now in a better way using the return stack?

Reference: Section 5.6.3 [Return stack|, page 107.

3.23 Memory

You can create a global variable v with
variable v (-- addr)

v pushes the address of a cell in memory on the stack.
This cell was reserved by variable. You can use ! (store)
to store values into this cell and @ (fetch) to load the value
from the stack into memory:

vo.
5v ! .s
v Q .

You can see a raw dump of memory with dump:
v 1 cells .s dump

Cells (nl --n2) gives you the number of bytes (or,
more generally, address units (aus)) that n1 cells occupy.
You can also reserve more memory:
create v2 20 cells allot
v2 20 cells dump

creates a variable-like word v2 and reserves 20 unini-
tialized cells; the address pushed by v2 points to the start

of these 20 cells (see Section 5.9.1 [CREATE], page 139).
You can use address arithmetic to access these cells:

Chapter 3: Forth Tutorial 43

3 v2 5 cells + !
v2 20 cells dump

You can reserve and initialize memory with ,:

create v3
5,4,3,2,1,

v3 @ .

v3 cell+ Q@ .

v3 2 cells + Q@ .

v3 5 cells dump

Assignment: Write a definition vsum (addr u -- n) that
computes the sum of u cells, with the first of these cells at
addr, the next one at addr cell+ etc.

The difference between variable and create is that
variable allots a cell, and that you cannot allot additional
memory to a variable in standard Forth.

You can also reserve memory without creating a new
word:

here 10 cells allot .
here .

The first here pushes the start address of the memory
area, the second here the address after the dictionary area.
You should store the start address somewhere, or you will
have a hard time finding the memory area again.

Allot manages dictionary memory. The dictionary
memory contains the system’s data structures for words
etc. on Gforth and most other Forth systems. It is man-
aged like a stack: You can free the memory that you have
just alloted with

-10 cells allot
here .

Chapter 3: Forth Tutorial 44

Note that you cannot do this if you have created a new
word in the meantime (because then your alloted memory
is no longer on the top of the dictionary “stack”).

Alternatively, you can use allocate and free which
allow freeing memory in any order:

10 cells allocate throw .s
20 cells allocate throw .s
swap

free throw

free throw

The throws deal with errors (e.g., out of memory).
And there is also a garbage collector, which eliminates
the need to free memory explicitly.

Reference: Section 5.7 [Memory]|, page 108.

3.24 Characters and Strings

On the stack characters take up a cell, like numbers. In
memory they have their own size (one 8-bit byte on most
systems), and therefore require their own words for mem-
ory access:
create v4

104 ¢, 97 ¢, 108 c, 108 c, 111 c,
v4 4 chars + cQ .
v4 5 chars dump

The preferred representation of strings on the stack
is addr u-count, where addr is the address of the first
character and u-count is the number of characters in the
string.
v4d 5 type

You get a string constant with

http://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Chapter 3: Forth Tutorial 45

s" hello, world" .s
type

Make sure you have a space between s" and the string;
s" is a normal Forth word and must be delimited with
white space (try what happens when you remove the
space).

However, this interpretive use of s" is quite restricted:
the string exists only until the next call of s" (some Forth
systems keep more than one of these strings, but usually
they still have a limited lifetime).

s" hello," s" world" .s
type
type

You can also use s" in a definition, and the resulting
strings then live forever (well, for as long as the definition):
: foo s" hello," s" world" ;
foo .s
type
type
Assignment: Emit (¢ --) types c as character (not a
number). Implement type (addr u --).

Reference: Section 5.7.6 [Memory Blocks], page 118.

3.25 Alignment

On many processors cells have to be aligned in memory, if
you want to access them with @ and ! (and even if the pro-
cessor does not require alignment, access to aligned cells
is faster).

Create aligns here (i.e., the place where the next allo-
cation will occur, and that the created word points to).

Chapter 3: Forth Tutorial 46

Likewise, the memory produced by allocate starts at an
aligned address. Adding a number of cells to an aligned
address produces another aligned address.

However, address arithmetic involving char+ and
chars can create an address that is not cell-aligned.
Aligned (addr -- a-addr) produces the next aligned
address:

v3 char+ aligned .s Q@ .
v3 char+ .s Q@ .

Similarly, align advances here to the next aligned ad-
dress:

create vb 97 c,
here .

align here .
1000 ,

Note that you should use aligned addresses even if your
processor does not require them, if you want your program
to be portable.

Reference: Section 5.7.5 [Address arithmetic], page 115.

3.26 Floating Point

Floating-point (FP) numbers and arithmetic in Forth
works mostly as one might expect, but there are a few
things worth noting:

The first point is not specific to Forth, but so important
and yet not universally known that I mention it here: FP
numbers are not reals. Many properties (e.g., arithmetic
laws) that reals have and that one expects of all kinds of
numbers do not hold for FP numbers. If you want to use
FP computations, you should learn about their problems

Chapter 3: Forth Tutorial 47

and how to avoid them; a good starting point is David
Goldberg, What Every Computer Scientist Should Know
About Floating-Point Arithmetic, ACM Computing Sur-
veys 23(1):5—48, March 1991.

In Forth source code literal FP numbers need an ex-
ponent, e.g., 1e0; this can also be written shorter as 1e,
longer as +1.0e+0, and many variations in between. The
reason for this is that, for historical reasons, Forth in-
terprets a decimal point alone (e.g., 1.) as indicating a
double-cell integer. Examples:

2e 2e f+ £.

Another requirement for literal FP numbers is that the
current base is decimal; with a hex base le is interpreted
as an integer.

Forth has a separate stack for FP numbers.®> One ad-
vantage of this model is that cells are not in the way when
accessing FP values, and vice versa. Forth has a set of
words for manipulating the FP stack: fdup fswap fdrop
fover frot and (non-standard) fnip ftuck fpick.

FP arithmetic words are prefixed with F. There is the
usual set £+ f- £x £/ £*x fnegate as well as a number of
words for other functions, e.g., fsqrt fsin fln fmin. One
word that you might expect is £=; but £= is non-standard,
because FP computation results are usually inaccurate, so
exact comparison is usually a mistake, and one should use
approximate comparison. Unfortunately, £, the standard
word for that purpose, is not well designed, so Gforth pro-
vides f~abs and f~rel as well.

3 Theoretically, an ANS Forth system may implement the FP stack
on the data stack, but virtually all systems implement a separate
FP stack; and programming in a way that accommodates all mod-
els is so cumbersome that nobody does it.

http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html

Chapter 3: Forth Tutorial 48

And of course there are words for accessing FP numbers
in memory (£f@ £!), and for address arithmetic (floats
float+ faligned). There are also variants of these words
with an sf and df prefix for accessing IEEE format single-
precision and double-precision numbers in memory; their
main purpose is for accessing external FP data (e.g., that
has been read from or will be written to a file).

Here is an example of a dot-product word and its use:

: vk (f_addrl nstridel f_addr2 nstride2 ucount -
>r swap 2swap swap Oe r> 0 7DO
dup f@ over + 2swap dup f@ fx f+ over + 2swap
LOOP
2drop 2drop ;

create v 1.23e f, 4.56e f, 7.8% f,

v 1 floats v 1 floats 3 wvx* f.

Assignment: Write a program to solve a quadratic equa-
tion. Then read Henry G. Baker, You Could Learn a Lot
from a Quadratic, ACM SIGPLAN Notices, 33(1):30—39,
January 1998, and see if you can improve your program.
Finally, find a test case where the original and the im-
proved version produce different results.

Reference: Section 5.5.6 [Floating Point|, page 100;
Section 5.6.2 [Floating point stack], page 106;
Section 5.13.2 [Number Conversion], page 185;
Section 5.7.4 [Memory Access|, page 113; Section 5.7.5

[Address arithmetic], page 115.

http://home.pipeline.com/~hbaker1/sigplannotices/sigcol05.ps.gz
http://home.pipeline.com/~hbaker1/sigplannotices/sigcol05.ps.gz

Chapter 3: Forth Tutorial 49
3.27 Files

This section gives a short introduction into how to use files
inside Forth. It’s broken up into five easy steps:

1. Opened an ASCII text file for input

2. Opened a file for output

3. Read input file until string matched (or some other con-
dition matched)

4. Wrote some lines from input (modified or not) to out-
put

5. Closed the files.

Reference: Section 5.17.2 [General files], page 206.
3.27.1 Open file for input

s" foo.in" r/o open-file throw Value fd-in

3.27.2 Create file for output

s" foo.out" w/o create-file throw Value fd-out

The available file modes are r/o for read-only access,
r/w for read-write access, and w/o for write-only access.
You could open both files with r/w, too, if you like. All file
words return error codes; for most applications, it’s best
to pass there error codes with throw to the outer error
handler.

If you want words for opening and assigning, define
them as follows:
0 Value fd-in
0 Value fd-out
: open-input (addr u --) «r/o open-file throw t
: open-output (addr u --) w/o create-file thro

Usage example:

Chapter 3: Forth Tutorial 50

s" foo.in" open-input
s" foo.out" open-output

3.27.3 Scan file for a particular line

256 Constant max-line
Create line-buffer max-line 2 + allot

scan-file (addr u -—-)
begin
line-buffer max-line fd-in read-line throw
while
>r 2dup line-buffer r> compare 0=

until
else

drop
then
2drop ;

read-line (addr ul fd -- u2 flag ior) reads up to
ul bytes into the buffer at addr, and returns the number
of bytes read, a flag that is false when the end of file is
reached, and an error code.

compare (addrl ul addr2 u2 --n) compares two
strings and returns zero if both strings are equal. It
returns a positive number if the first string is lexically
greater, a negative if the second string is lexically greater.

We haven’t seen this loop here; it has two exits. Since
the while exits with the number of bytes read on the stack,
we have to clean up that separately; that’s after the else.

Usage example:

s" The text I search is here" scan-file

Chapter 3: Forth Tutorial 51

3.27.4 Copy input to output
: copy-file (--)
begin
line-buffer max-line fd-in read-line throw
while
line-buffer swap fd-out write-line throw
repeat
drop ;

3.27.5 Close files

fd-in close-file throw
fd-out close-file throw

Likewise, you can put that into definitions, too:

: close-input (--) fd-in close-file throw ;
: close-output (--) fd-out close-file throw ;

Assignment: How could you modify copy-file so that it
copies until a second line is matched? Can you write a
program that extracts a section of a text file, given the
line that starts and the line that terminates that section?

3.28 Interpretation and Compilation
Semantics and Immediacy

When a word is compiled, it behaves differently from being
interpreted. E.g., consider +:

12+ .
: foo + ;

These two behaviours are known as compilation and
interpretation semantics. For normal words (e.g., +), the
compilation semantics is to append the interpretation se-
mantics to the currently defined word (foo in the example

Chapter 3: Forth Tutorial 52

above). L.e., when foo is executed later, the interpreta-
tion semantics of + (i.e., adding two numbers) will be per-
formed.

However, there are words with non-default compilation
semantics, e.g., the control-flow words like if. You can use
immediate to change the compilation semantics of the last
defined word to be equal to the interpretation semantics:

[Fool ¢ --)
5 . ; immediate

[FOO]

: bar (-—-)
[FOO] ;

bar

see bar

Two conventions to mark words with non-default com-
pilation semantics are names with brackets (more fre-
quently used) and to write them all in upper case (less
frequently used).

In Gforth (and many other systems) you can also
remove the interpretation semantics with compile-only
(the compilation semantics is derived from the original in-
terpretation semantics):

: flip (==)

6 . ; compile-only \ but not immediate
flip

: flop (==)

flip ;

flop

Chapter 3: Forth Tutorial 53

In this example the interpretation semantics of £1lop is
equal to the original interpretation semantics of £1ip.

The text interpreter has two states: in interpret state,
it performs the interpretation semantics of words it en-
counters; in compile state, it performs the compilation se-
mantics of these words.

Among other things, : switches into compile state, and
; switches back to interpret state. They contain the fac-
tors] (switch to compile state) and [(switch to interpret
state), that do nothing but switch the state.

cxxx (-)

[5 .1

XXX
see XXX

These brackets are also the source of the naming con-
vention mentioned above.

Reference: Section 5.10 [Interpretation and Compila-
tion Semantics|, page 162.

3.29 Execution Tokens

> word gives you the execution token (XT) of a word. The
XT is a cell representing the interpretation semantics of a
word. You can execute this semantics with execute:

>+ .8
1 2 rot execute .
The XT is similar to a function pointer in C. However,

parameter passing through the stack makes it a little more
flexible:

Chapter 3: Forth Tutorial 54

: map-array (... addr u xt -- ...)
\ executes xt (... x == ...) for every element
\ at addr and containing u elements

{xt}

cells over + swap 7do
i @ xt execute
1 cells +loop ;

createad , 4,2, -1, 4,
a 5’ . map-array .s

0 a 5’ + map-array .

s" max-n" environment? drop .s
a 5 ’ min map-array .

You can use map-array with the XTs of words that
consume one element more than they produce. In theory
you can also use it with other XTs, but the stack effect
then depends on the size of the array, which is hard to
understand.

Since XTs are cell-sized, you can store them in memory
and manipulate them on the stack like other cells. You can
also compile the XT into a word with compile,:

: fool (n1 n2 -- n)
[> + compile,] ;
see fool
This is non-standard, because compile, has no com-

pilation semantics in the standard, but it works in good
Forth systems. For the broken ones, use

[compile,] compile, ; immediate

: fool (n1 n2 -- n)
[> + 1] [compile,] ;

Chapter 3: Forth Tutorial 55
see foo

’ is a word with default compilation semantics; it parses
the next word when its interpretation semantics are exe-
cuted, not during compilation:

: foo (-- xt)
J .

b

see foo

: bar (... "word" -—- ...)
’ execute ;

see bar

1 2 bar + .

You often want to parse a word during compilation and
compile its XT so it will be pushed on the stack at run-
time. [’] does this:

:xt—+ (— xt)
[’] +

see xt-+

1 2 xt-+ execute .

Many programmers tend to see > and the word it parses
as one unit, and expect it to behave like [’] when com-
piled, and are confused by the actual behaviour. If you are,
just remember that the Forth system just takes ’ as one
unit and has no idea that it is a parsing word (attempts
to convenience programmers in this issue have usually re-
sulted in even worse pitfalls, see State-smartness—Why
it is evil and How to Exorcise it).

Note that the state of the interpreter does not come into
play when creating and executing XTs. I.e., even when
you execute ’ in compile state, it still gives you the inter-
pretation semantics. And whatever that state is, execute

http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz

Chapter 3: Forth Tutorial 56

performs the semantics represented by the XT (i.e., for
XTs produced with ’ the interpretation semantics).

Reference: Section 5.11 [Tokens for Words], page 167.

3.30 Exceptions

throw (n ——) causes an exception unless n is zero.

100 throw .s
0 throw .s

catch (... xt--...n) behaves similar to
execute, but it catches exceptions and pushes the
number of the exception on the stack (or 0, if the xt
executed without exception). If there was an exception,
the stacks have the same depth as when entering catch:

.s
30’ / catch .s
32’ / catch .s

Assignment: Try the same with execute instead of catch.

Throw always jumps to the dynamically next enclosing
catch, even if it has to leave several call levels to achieve
this:

: foo 100 throw ;

: fool foo ." after foo" ;
: bar [’] fool catch ;
bar .

It is often important to restore a value upon leaving a
definition, even if the definition is left through an excep-
tion. You can ensure this like this:

save-x
[’] word-changing-x catch (... n)

Chapter 3: Forth Tutorial 57

restore-x
(... n) throw ;

However, this is still not safe against, e.g., the user
pressing Ctrl-C when execution is between the catch and
restore-x.

Gforth provides an alternative exception handling syn-
tax that is safe against such cases: try ... restore ...
endtry. If the code between try and endtry has an excep-
tion, the stack depths are restored, the exception number
is pushed on the stack, and the execution continues right
after restore.

The safer equivalent to the restoration code above is

save-x
try
word-changing-x O
restore
restore-x
endtry
throw ;

Reference: Section 5.8.6 [Exception Handling],
page 133.

3.31 Defining Words

:, create, and variable are definition words: They define
other words. Constant is another definition word:

5 constant foo
foo .

You can also use the prefixes 2 (double-cell) and £
(floating point) with variable and constant.

You can also define your own defining words. E.g.:

Chapter 3: Forth Tutorial 58

: variable ("name" --)
create 0 , ;

You can also define defining words that create words
that do something other than just producing their address:

: constant (n "name" --)
create ,

does> (-- n)
(addr) @ ;

5 constant foo
foo .

The definition of constant above ends at the does>;
i.e., does> replaces ;, but it also does something else: It
changes the last defined word such that it pushes the ad-
dress of the body of the word and then performs the code
after the does> whenever it is called.

In the example above, constant uses , to store 5 into
the body of foo. When foo executes, it pushes the address
of the body onto the stack, then (in the code after the
does>) fetches the 5 from there.

The stack comment near the does> reflects the stack
effect of the defined word, not the stack effect of the code
after the does> (the difference is that the code expects
the address of the body that the stack comment does not
show).

You can use these definition words to do factoring in
cases that involve (other) definition words. E.g., a field
offset is always added to an address. Instead of defining

2 cells constant offset-fieldl

and using this like

Chapter 3: Forth Tutorial 59

(addr) offset-fieldl +
you can define a definition word
: simple-field (n "name" --)
create ,
does> (n1 -- nl+n)
(addr) @ + ;

Definition and use of field offsets now look like this:

2 cells simple-field fieldl
create mystruct 4 cells allot
mystruct .s fieldl .s drop

If you want to do something with the word without
performing the code after the does>, you can access the
body of a created word with >body (xt -- addr):

: value (n "name" --)
create ,

does> (-- n1)
Q ;

: to (n "name" --)
> >body ! ;

5 value foo
foo .
7 to foo
foo
Assignment: Define defer ("name" --), which creates a
word that stores an XT (at the start the XT of abort), and
upon execution executes the XT. Define is (xt "name"
--) that stores xt into name, a word defined with defer.
Indirect recursion is one application of defer.

Reference: Section 5.9.9 [User-defined Defining Words],
page 147.

Chapter 3: Forth Tutorial 60
3.32 Arrays and Records

Forth has no standard words for defining data structures
such as arrays and records (structs in C terminology), but
you can build them yourself based on address arithmetic.
You can also define words for defining arrays and records
(see Section 3.31 [Defining Words|, page 57).

One of the first projects a Forth newcomer sets out
upon when learning about defining words is an array defin-
ing word (possibly for n-dimensional arrays). Go ahead
and do it, I did it, too; you will learn something from
it. However, don’t be disappointed when you later learn
that you have little use for these words (inappropriate use
would be even worse). I have not found a set of useful ar-
ray words yet; the needs are just too diverse, and named,
global arrays (the result of naive use of defining words) are
often not flexible enough (e.g., consider how to pass them
as parameters). Another such project is a set of words to
help dealing with strings.

On the other hand, there is a useful set of record words,
and it has been defined in compat/struct.fs; these words
are predefined in Gforth. They are explained in depth
elsewhere in this manual (see see Section 5.22 [Structures],
page 259). The simple-field example above is simplified
variant of fields in this package.

3.33 POSTPONE

You can compile the compilation semantics (instead of
compiling the interpretation semantics) of a word with
POSTPONE:

: MY-+ (Compilation: -- ; Run-time of compiled c
POSTPONE + ; immediate

Chapter 3: Forth Tutorial 61

: foo (n1 n2 -- n)
MY-+ ;

1 2 foo .

see foo

During the definition of foo the text interpreter per-
forms the compilation semantics of MY-+, which performs
the compilation semantics of +, i.e., it compiles + into foo.

This example also displays separate stack comments
for the compilation semantics and for the stack effect of
the compiled code. For words with default compilation
semantics these stack effects are usually not displayed; the
stack effect of the compilation semantics is always (--)
for these words, the stack effect for the compiled code is
the stack effect of the interpretation semantics.

Note that the state of the interpreter does not come
into play when performing the compilation semantics in
this way. You can also perform it interpretively, e.g.:

: foo2 (nl n2 -— n)
[MY-+] ;

1 2 foo .

see foo

However, there are some broken Forth systems where
this does not always work, and therefore this practice was
been declared non-standard in 1999.

Here is another example for using POSTPONE:

: MY-- (Compilation: -- ; Run-time of compiled c
POSTPONE negate POSTPONE + ; immediate compile-o
: bar (n1 n2 -- n)

Chapter 3: Forth Tutorial 62
You can define ENDIF in this way:

: ENDIF (Compilation: orig --)
POSTPONE then ; immediate

Assignment: Write MY-2DUP that has compilation seman-
tics equivalent to 2dup, but compiles over over.

3.34 Literal
You cannot POSTPONE numbers:

[FOO] POSTPONE 500 ; immediate

Instead, you can use LITERAL (compilation: n --;
run-time: -- n):

[FOO0] (compilation: --; run-time: -- n)
500 POSTPONE literal ; immediate

: flip [FOO] ;
flip .
see flip

LITERAL consumes a number at compile-time (when it’s
compilation semantics are executed) and pushes it at run-
time (when the code it compiled is executed). A frequent
use of LITERAL is to compile a number computed at com-
pile time into the current word:

: bar (-- n)
[22+] literal ;
see bar

Assignment: Write 1L which allows writing the example
aboveas : bar (--n) [22+]L ;

Chapter 3: Forth Tutorial 63

3.35 Advanced macros

Reconsider map-array from Section 3.29 [Execution To-
kens|, page 53. It frequently performs execute, a rela-
tively expensive operation in some Forth implementations.
You can use compile, and POSTPONE to eliminate these
executes and produce a word that contains the word to
be performed directly:

: compile-map-array (compilation: xt -- ; run-ti
\ at run-time, execute xt (... x —— ...) for ea
\ array beginning at addr and containing u elemen
{xt?}
POSTPONE cells POSTPONE over POSTPONE + POSTPON
POSTPONE i POSTPONE @ xt compile,
1 cells POSTPONE literal POSTPONE +loop ;

: sum-array (addr u -- n)

0 rot rot [’ + compile-map-array] ;
see sum-array
a 5 sum-array .

You can use the full power of Forth for generating the
code; here’s an example where the code is generated in a
loop:

: compile-vmul-step (compilation: n --; run-time
\ n2=ni1+(addrl)*n, addr2=addri+cell
POSTPONE tuck POSTPONE @
POSTPONE literal POSTPONE * POSTPONE +
POSTPONE swap POSTPONE cell+ ;

: compile-vmul (compilation: addrl u -- ; run-ti
\ n=v1*v2 (inner product), where the v_i are repr
O postpone literal postpone swap

Chapter 3: Forth Tutorial 64

[° compile-vmul-step compile-map-array]
postpone drop ;
see compile-vmul

: a-vmul (addr -- n)

\ n=a*v, where v is a vector that’s as long as a
[a 5 compile-vmul] ;

see a-vmul

a a-vmul .

This example uses compile-map-array to show off, but
you could also use map-array instead (try it now!).

You can use this technique for efficient multiplication
of large matrices. In matrix multiplication, you multiply
every line of one matrix with every column of the other ma-
trix. You can generate the code for one line once, and use
it for every column. The only downside of this technique
is that it is cumbersome to recover the memory consumed
by the generated code when you are done (and in more
complicated cases it is not possible portably).

3.36 Compilation Tokens
This section is Gforth-specific. You can skip it.

> word compile, compiles the interpretation seman-
tics. For words with default compilation semantics this
is the same as performing the compilation semantics.
To represent the compilation semantics of other words
(e.g., words like if that have no interpretation semantics),
Gforth has the concept of a compilation token (CT, con-
sisting of two cells), and words comp’ and [comp’]. You
can perform the compilation semantics represented by a
CT with execute:

Chapter 3: Forth Tutorial 65

: foo2 (nl n2 -- n)

[comp’ + execute] ;
see foo

You can compile the compilation semantics represented
by a CT with postpone,:

: foo3 (—-)
[comp’ + postpone,] ;
see foo3

[comp’ word postpone,] is equi