
Gforth
for version 0.7.9˙20211125, February 8, 2018

Neal Crook
Anton Ertl
David Kuehling
Bernd Paysan
Jens Wilke

This manual is for Gforth (version 0.7.9˙20211125, Febru-
ary 8, 2018), a fast and portable implementation of the
Standard Forth language. It serves as reference manual,
but it also contains an introduction to Forth and a Forth
tutorial.

Authors: Bernd Paysan, Anton Ertl, Gerald Wodni
Copyright c© 1995, 1996, 1997, 1998, 2000, 2003,
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012,
2013, 2014,2015,2016,2017,2018,2019,2020 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documen-
tation License, Version 1.1 or any later version published
by the Free Software Foundation; with no Invariant Sec-
tions, with the Front-Cover texts being “A GNU Manual,”
and with the Back-Cover Texts as in (a) below. A copy of
the license is included in the section entitled “GNU Free
Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to
copy and modify this GNU Manual, like GNU software.
Copies published by the Free Software Foundation raise
funds for GNU development.”

i

Table of Contents

Preface . 1

1 Goals of Gforth . 2
1.1 Stability Goals . 3

2 Gforth Environment 4
2.1 Invoking Gforth . 4
2.2 Leaving Gforth . 10
2.3 Help on Gforth . 10
2.4 Command-line editing . 11
2.5 Environment variables . 13
2.6 Gforth files . 14
2.7 Gforth in pipes . 14
2.8 Startup speed . 16

3 Forth Tutorial . 18
3.1 Starting Gforth . 18
3.2 Syntax . 19
3.3 Crash Course . 19
3.4 Stack . 20
3.5 Arithmetics . 20
3.6 Stack Manipulation . 21
3.7 Using files for Forth code . 22
3.8 Comments . 23
3.9 Colon Definitions . 24
3.10 Decompilation . 25
3.11 Stack-Effect Comments . 25

ii

3.12 Types . 28
3.13 Factoring . 29
3.14 Designing the stack effect 30
3.15 Local Variables . 31
3.16 Conditional execution . 32
3.17 Flags and Comparisons . 34
3.18 General Loops . 36
3.19 Counted loops . 38
3.20 Recursion . 39
3.21 Leaving definitions or loops 40
3.22 Return Stack . 41
3.23 Memory . 42
3.24 Characters and Strings . 45
3.25 Alignment . 46
3.26 Floating Point . 47
3.27 Files . 49

3.27.1 Open file for input . 49
3.27.2 Create file for output 49
3.27.3 Scan file for a particular line 50
3.27.4 Copy input to output 51
3.27.5 Close files . 51

3.28 Interpretation and Compilation
Semantics and Immediacy . 52

3.29 Execution Tokens . 54
3.30 Exceptions . 56
3.31 Defining Words . 58
3.32 Arrays and Records . 60
3.33 POSTPONE . 61
3.34 Literal . 62
3.35 Advanced macros . 63
3.36 Compilation Tokens . 65
3.37 Wordlists and Search Order 66

iii

4 An Introduction to
Standard Forth . 68
4.1 Introducing the Text Interpreter 69
4.2 Stacks, postfix notation and
parameter passing . 72

4.3 Your first Forth definition . 78
4.4 How does that work? . 80
4.5 Forth is written in Forth . 85
4.6 Review - elements of a Forth system 86
4.7 Where To Go Next . 88
4.8 Exercises . 89

5 Forth Words . 90
5.1 Notation . 90
5.2 Case insensitivity . 93
5.3 Comments . 94
5.4 Boolean Flags . 95
5.5 Arithmetic . 95

5.5.1 Single precision . 96
5.5.2 Double precision . 97
5.5.3 Mixed precision . 97
5.5.4 Integer division . 98
5.5.5 Two-stage integer division 102
5.5.6 Bitwise operations . 105
5.5.7 Numeric comparison 108
5.5.8 Floating Point . 109

5.6 Stack Manipulation . 113
5.6.1 Data stack . 114
5.6.2 Floating point stack . 115
5.6.3 Return stack . 115
5.6.4 Locals stack . 116

iv

5.6.5 Stack pointer manipulation 116
5.7 Memory . 117

5.7.1 Memory model . 117
5.7.2 Dictionary allocation 118
5.7.3 Heap allocation . 120
5.7.4 Memory Access . 121
5.7.5 Address arithmetic . 123
5.7.6 Memory Blocks . 126

5.8 Control Structures . 128
5.8.1 Selection . 128
5.8.2 Simple Loops . 131
5.8.3 Counted Loops . 132
5.8.4 Begin loops with multiple exits 135
5.8.5 General control structures with case . . . 136
5.8.6 Arbitrary control structures 138

5.8.6.1 Programming Style 144
5.8.7 Calls and returns . 145
5.8.8 Exception Handling . 146

5.9 Defining Words . 153
5.9.1 CREATE . 153
5.9.2 Variables . 154
5.9.3 Constants . 156
5.9.4 Values . 158
5.9.5 Colon Definitions . 158
5.9.6 Anonymous Definitions 159
5.9.7 Quotations . 160
5.9.8 Supplying the name of a defined word . . 161
5.9.9 User-defined Defining Words 161

5.9.9.1 Applications of CREATE..DOES> 166
5.9.9.2 The gory
details of CREATE..DOES> 167

5.9.9.3 Advanced does> usage example 169

v

5.9.9.4 Const-does> . 172
5.9.10 Deferred Words . 173
5.9.11 Forward . 175
5.9.12 Aliases . 176

5.10 Interpretation and
Compilation Semantics . 177
5.10.1 Combined Words . 178

5.11 Tokens for Words . 181
5.11.1 Execution token . 181
5.11.2 Compilation token . 183
5.11.3 Name token . 184

5.12 Compiling words . 186
5.12.1 Literals . 186
5.12.2 Macros . 188

5.13 The Text Interpreter . 194
5.13.1 Input Sources . 198
5.13.2 Number Conversion 199
5.13.3 Interpret/Compile states 203
5.13.4 Interpreter Directives 204
5.13.5 Recognizers . 206

5.14 The Input Stream . 208
5.15 Word Lists . 210

5.15.1 Vocabularies . 215
5.15.2 Why use word lists? 216
5.15.3 Word list example . 217

5.16 Environmental Queries . 218
5.17 Files . 220

5.17.1 Forth source files . 221
5.17.2 General files . 223
5.17.3 Redirection . 225
5.17.4 Directories . 226
5.17.5 Search Paths . 228

vi

5.17.5.1 Source Search Paths 229
5.17.5.2 General Search Paths 229

5.18 Blocks . 230
5.19 Other I/O . 236

5.19.1 Simple numeric output 237
5.19.2 Formatted numeric output 240
5.19.3 String Formats . 245
5.19.4 Displaying characters and strings 245
5.19.5 String words . 250
5.19.6 Terminal output . 254

5.19.6.1 Color output . 254
5.19.6.2 Color themes . 255

5.19.7 Single-key input . 255
5.19.8 Line input and conversion 259
5.19.9 Pipes . 261
5.19.10 Xchars and Unicode 261

5.20 OS command line arguments 265
5.21 Locals . 267

5.21.1 Gforth locals . 267
5.21.1.1 Where are
locals visible by name? 269

5.21.1.2 How long do locals live? 274
5.21.1.3 Locals programming style 274
5.21.1.4 Locals implementation 276
5.21.1.5 Closures . 280

5.21.2 Standard Forth locals 283
5.22 Structures . 284

5.22.1 Why explicit structure support? 285
5.22.2 Structure Usage . 287
5.22.3 Structure Naming Convention 289
5.22.4 Structure Implementation 290
5.22.5 Structure Glossary . 291

vii

5.22.6 Forth200x Structures 292
5.23 Object-oriented Forth . 293

5.23.1 Why object-oriented programming? . . . 293
5.23.2 Object-Oriented Terminology 294
5.23.3 The objects.fs model 296

5.23.3.1 Properties of
the objects.fs model 296

5.23.3.2 Basic objects.fs Usage 297
5.23.3.3 The object.fs base class 299
5.23.3.4 Creating objects 299
5.23.3.5
Object-Oriented Programming Style 299

5.23.3.6 Class Binding . 300
5.23.3.7 Method conveniences 301
5.23.3.8 Classes and Scoping 303
5.23.3.9 Dividing classes 304
5.23.3.10 Object Interfaces 305
5.23.3.11 objects.fs Implementation 306
5.23.3.12 objects.fs Glossary 310

5.23.4 The oof.fs model . 314
5.23.4.1 Properties of the oof.fs model . . 315
5.23.4.2 Basic oof.fs Usage 315
5.23.4.3 The oof.fs base class 317
5.23.4.4 Class Declaration 319
5.23.4.5 Class Implementation 320

5.23.5 The mini-oof.fs model 320
5.23.5.1 Basic mini-oof.fs Usage 320
5.23.5.2 Mini-OOF Example 321
5.23.5.3 mini-oof.fs Implementation 322

5.23.6 Comparison with
other object models . 325

5.24 Programming Tools . 327

viii

5.24.1 Locating source code definitions 327
5.24.2 Locating documentation 329
5.24.3 Locating uses of a word 330
5.24.4 Locating exception source 331
5.24.5 Examining compiled code 331
5.24.6 Examining data and code 332
5.24.7 Forgetting words . 333
5.24.8 Debugging . 334
5.24.9 Assertions . 336
5.24.10 Singlestep Debugger 338
5.24.11 Code Coverage and
Execution Frequency . 340

5.25 Multitasker . 342
5.25.1 Ptheads . 342

5.25.1.1 Special User Variables 344
5.25.1.2 Semaphores . 344
5.25.1.3 Atomic operations 345
5.25.1.4 Message Queues 345
5.25.1.5 Conditions . 347

5.26 C Interface . 347
5.26.1 Calling C functions 347
5.26.2 Declaring C Functions 349
5.26.3 Calling C function
pointers from Forth . 352

5.26.4 Defining library interfaces 353
5.26.5 Declaring OS-level libraries 354
5.26.6 Callbacks . 355
5.26.7 How the C interface works 356
5.26.8 Low-Level C Interface Words 357
5.26.9 Automated interface
generation using SWIG . 357
5.26.9.1 Basic operation 358

ix

5.26.9.2 Detailed operation: 358
5.26.9.3 Examples . 359

5.26.10 Migrating from Gforth 0.7 359
5.27 Assembler and Code Words 359

5.27.1 Definitions in assembly language 360
5.27.2 Common Assembler 364
5.27.3 Common Disassembler 365
5.27.4 386 Assembler . 366
5.27.5 AMD64 (x86 64) Assembler 369
5.27.6 Alpha Assembler . 374
5.27.7 MIPS assembler . 375
5.27.8 PowerPC assembler 377
5.27.9 ARM Assembler . 377
5.27.10 Other assemblers . 380

5.28 Threading Words . 381
5.29 Passing Commands to the
Operating System . 384

5.30 Keeping track of Time . 384
5.31 Miscellaneous Words . 385

6 Error messages 387

7 Tools . 389
7.1 ans-report.fs: Report the words

used, sorted by wordset . 389
7.1.1 Caveats . 390

7.2 Stack depth changes during interpretation . . . 390

x

8 Standard conformance 392
8.1 The Core Words . 393

8.1.1 Implementation Defined Options 393
8.1.2 Ambiguous conditions 399
8.1.3 Other system documentation 405

8.2 The optional Block word set 406
8.2.1 Implementation Defined Options 406
8.2.2 Ambiguous conditions 406
8.2.3 Other system documentation 407

8.3 The optional Double Number word set 407
8.3.1 Ambiguous conditions 407

8.4 The optional Exception word set 407
8.4.1 Implementation Defined Options 407

8.5 The optional Facility word set 408
8.5.1 Implementation Defined Options 408
8.5.2 Ambiguous conditions 408

8.6 The optional File-Access word set 408
8.6.1 Implementation Defined Options 409
8.6.2 Ambiguous conditions 410

8.7 The optional Floating-Point word set 411
8.7.1 Implementation Defined Options 411
8.7.2 Ambiguous conditions 412

8.8 The optional Locals word set 414
8.8.1 Implementation Defined Options 414
8.8.2 Ambiguous conditions 414

8.9 The optional Memory-Allocation word set . . . 415
8.9.1 Implementation Defined Options 415

8.10 The optional
Programming-Tools word set 415
8.10.1 Implementation Defined Options 415
8.10.2 Ambiguous conditions 416

8.11 The optional Search-Order word set 416

xi

8.11.1 Implementation Defined Options 417
8.11.2 Ambiguous conditions 417

9 Should I use Gforth
extensions? . 418

10 Model . 421

11 Integrating Gforth into
C programs . 422
11.1 Types . 423
11.2 Variables . 423
11.3 Functions . 424
11.4 Signals . 424

12 Emacs and Gforth 425
12.1 Installing gforth.el . 426
12.2 Emacs Tags . 426
12.3 Hilighting . 427
12.4 Auto-Indentation . 428
12.5 Blocks Files . 429

xii

13 Image Files . 431
13.1 Image Licensing Issues . 431
13.2 Image File Background . 432
13.3 Non-Relocatable Image Files 434
13.4 Data-Relocatable Image Files 435
13.5 Fully Relocatable Image Files 435

13.5.1 gforthmi . 436
13.5.2 cross.fs . 437

13.6 Stack and Dictionary Sizes 438
13.7 Running Image Files . 438
13.8 Modifying the Startup Sequence 440

14 Engine . 443
14.1 Portability . 443
14.2 Threading . 445

14.2.1 Scheduling . 445
14.2.2 Direct or Indirect Threaded? 447
14.2.3 Dynamic Superinstructions 448
14.2.4 DOES> . 451

14.3 Primitives . 451
14.3.1 Automatic Generation 452
14.3.2 TOS Optimization . 454
14.3.3 Produced code . 455

14.4 Performance . 456

15 Cross Compiler 460
15.1 Using the Cross Compiler 460
15.2 How the Cross Compiler Works 463

Appendix A Bugs 464

xiii

Appendix B Authors and
Ancestors of Gforth 465
B.1 Authors and Contributors 465
B.2 Pedigree . 466

Appendix C Other
Forth-related information 468

Appendix D Licenses 469
D.1 GNU Free Documentation License 469

D.1.1 ADDENDUM: How to use this
License for your documents 482

D.2 GNU GENERAL PUBLIC LICENSE 482

Word Index . 506

Concept and Word Index 533

1

Preface

This manual documents Gforth. Some introductory mate-
rial is provided for readers who are unfamiliar with Forth
or who are migrating to Gforth from other Forth compilers.
However, this manual is primarily a reference manual.

2

1 Goals of Gforth

The goal of the Gforth Project is to develop a standard
model for Standard Forth. This can be split into several
subgoals:

• Gforth should conform to the Forth Standard.

• It should be a model, i.e. it should define all the
implementation-dependent things.

• It should become standard, i.e. widely accepted and
used. This goal is the most difficult one.

To achieve these goals Gforth should be

• Similar to previous models (fig-Forth, F83)

• Powerful. It should provide for all the things that are
considered necessary today and even some that are not
yet considered necessary.

• Efficient. It should not get the reputation of being ex-
ceptionally slow.

• Free.

• Available on many machines/easy to port.

Have we achieved these goals? Gforth conforms to the
Forth-94 (ANS Forth) and Forth-2012 standards. We have
changed some of the internal data structures (in particular,
the headers) over time, so Gforth cannot be considered a
stable model. It certainly has not yet become a de facto
standard, but it appears to be quite popular. It has some
similarities to and some differences from previous models.
It has some powerful features, but not yet everything that
we envisioned. We certainly have achieved our execution

Chapter 1: Goals of Gforth 3

speed goals (see Section 14.4 [Performance], page 456)1. It
is free and available on many machines.

1.1 Stability Goals

Programs that work on earlier versions of Gforth should
also work on newer versions. However, there are some
caveats:

Internal data structures (including the representation
of code) of Gforth may change between versions, unless
they are documented.

Moreover, we only feel obliged to keep standard words
(i.e., with standard wordset names) and words docu-
mented as permanent Gforth extensions (with wordset
name gforth or gforth-<version>, see Section 5.1 [No-
tation], page 90). Other words may be removed in newer
releases.

In particular, you may find a word by using locate

or otherwise inspecting Gforth’s source code. You can see
the wordset in a comment right after the stack-effect com-
ment. If there is no wordset for a word, it is an internal
factor and may be removed in a future version. If the
wordset is gforth-experimental, gforth-internal, or
gforth-obsolete, the word may also be removed in a fu-
ture version.

If you want to use a particular word that is not marked
as permanent, please let us know, and we will consider to
add the word as permanent word (or we may suggest an
alternative to using this word).

1 However, in 1998 the bar was raised when the major commercial
Forth vendors switched to native code compilers.

4

2 Gforth Environment

Note: ultimately, the Gforth man page will be auto-
generated from the material in this chapter.

For related information about the creation of images
see Chapter 13 [Image Files], page 431.

2.1 Invoking Gforth

Gforth is made up of two parts; an executable “engine”
(named gforth or gforth-fast) and an image file. To
start it, you will usually just say gforth – this automat-
ically loads the default image file gforth.fi. In many
other cases the default Gforth image will be invoked like
this:

gforth [file | -e forth-code] ...

This interprets the contents of the files and the Forth code
in the order they are given.

In addition to the gforth engine, there is also an engine
called gforth-fast, which is faster, but gives less infor-
mative error messages (see Chapter 6 [Error messages],
page 387) and may catch some errors (in particular, stack
underflows and integer division errors) later or not at all.
You should use it for debugged, performance-critical pro-
grams.

Moreover, there is an engine called gforth-itc, which
is useful in some backwards-compatibility situations (see
Section 14.2.2 [Direct or Indirect Threaded?], page 447).

In general, the command line looks like this:

gforth[-fast] [engine options] [image options]

Chapter 2: Gforth Environment 5

The engine options must come before the rest of the
command line. They are:

--image-file file

-i file

Loads the Forth image file instead of the default
gforth.fi (see Chapter 13 [Image Files], page 431).

--appl-image file

Loads the image file and leaves all further command-
line arguments to the image (instead of processing them
as engine options). This is useful for building exe-
cutable application images on Unix, built with gforthmi

--application

--path path

-p path

Uses path for searching the image file and Forth
source code files instead of the default in the envi-
ronment variable GFORTHPATH or the path specified at
installation time and the working directory . (e.g.,
/usr/local/share/gforth/0.2.0:.). A path is given
as a list of directories, separated by ‘:’ (previous versions
had ‘;’ for other OSes, but since Cygwin now only
accepts /cygdrive/<letter>, and we dropped support
for OS/2 and MS-DOS, it is ‘:’ everywhere).

--dictionary-size size

-m size

Allocate size space for the Forth dictionary space in-
stead of using the default specified in the image (typically
256K). The size specification for this and subsequent op-
tions consists of an integer and a unit (e.g., 4M). The
unit can be one of b (bytes), e (element size, in this case

Chapter 2: Gforth Environment 6

Cells), k (kilobytes), M (Megabytes), G (Gigabytes), and
T (Terabytes). If no unit is specified, e is used.

--data-stack-size size

-d size

Allocate size space for the data stack instead of using
the default specified in the image (typically 16K).

--return-stack-size size

-r size

Allocate size space for the return stack instead of using
the default specified in the image (typically 15K).

--fp-stack-size size

-f size

Allocate size space for the floating point stack instead of
using the default specified in the image (typically 15.5K).
In this case the unit specifier e refers to floating point
numbers.

--locals-stack-size size

-l size

Allocate size space for the locals stack instead of using
the default specified in the image (typically 14.5K).

--vm-commit

Normally, Gforth tries to start up even if there is not
enough virtual memory for the dictionary and the stacks
(using MAP_NORESERVE on OSs that support it); so you
can ask for a really big dictionary and/or stacks, and
as long as you don’t use more virtual memory than is
available, everything will be fine (but if you use more,
processes get killed). With this option you just use the
default allocation policy of the OS; for OSs that don’t
overcommit (e.g., Solaris), this means that you cannot

Chapter 2: Gforth Environment 7

and should not ask for as big dictionary and stacks, but
once Gforth successfully starts up, out-of-memory won’t
kill it.

--help

-h

Print a message about the command-line options

--version

-v

Print version and exit

--debug

Print some information useful for debugging on startup.

--offset-image

Start the dictionary at a slightly different position
than would be used otherwise (useful for creating data-
relocatable images, see Section 13.4 [Data-Relocatable
Image Files], page 435).

--no-offset-im

Start the dictionary at the normal position.

--clear-dictionary

Initialize all bytes in the dictionary to 0 before load-
ing the image (see Section 13.4 [Data-Relocatable Image
Files], page 435).

--die-on-signal

Normally Gforth handles most signals (e.g., the user
interrupt SIGINT, or the segmentation violation
SIGSEGV) by translating it into a Forth THROW. With
this option, Gforth exits if it receives such a signal. This
option is useful when the engine and/or the image might
be severely broken (such that it causes another signal

Chapter 2: Gforth Environment 8

before recovering from the first); this option avoids
endless loops in such cases.

--no-dynamic

--dynamic

Disable or enable dynamic superinstructions with repli-
cation (see Section 14.2.3 [Dynamic Superinstructions],
page 448).

--no-super

Disable dynamic superinstructions, use just dynamic
replication; this is useful if you want to patch threaded
code (see Section 14.2.3 [Dynamic Superinstructions],
page 448).

--ss-number=N

Use only the first N static superinstructions compiled
into the engine (default: use them all; note that only
gforth-fast has any). This option is useful for measur-
ing the performance impact of static superinstructions.

--ss-min-codesize

--ss-min-ls

--ss-min-lsu

--ss-min-nexts

Use specified metric for determining the cost of a primi-
tive or static superinstruction for static superinstruction
selection. Codesize is the native code size of the prim-
ive or static superinstruction, ls is the number of loads
and stores, lsu is the number of loads, stores, and up-
dates, and nexts is the number of dispatches (not tak-
ing dynamic superinstructions into account), i.e. every
primitive or static superinstruction has cost 1. Default:
codesize if you use dynamic code generation, otherwise
nexts.

Chapter 2: Gforth Environment 9

--ss-greedy

This option is useful for measuring the performance im-
pact of static superinstructions. By default, an optimal
shortest-path algorithm is used for selecting static su-
perinstructions. With --ss-greedy this algorithm is
modified to assume that anything after the static su-
perinstruction currently under consideration is not com-
bined into static superinstructions. With --ss-min-

nexts this produces the same result as a greedy algo-
rithm that always selects the longest superinstruction
available at the moment. E.g., if there are superinstruc-
tions AB and BCD, then for the sequence A B C D the
optimal algorithm will select A BCD and the greedy al-
gorithm will select AB C D.

--print-metrics

Prints some metrics used during static superinstruction
selection: code size is the actual size of the dynami-
cally generated code. Metric codesize is the sum of the
codesize metrics as seen by static superinstruction selec-
tion; there is a difference from code size, because not
all primitives and static superinstructions are compiled
into dynamically generated code, and because of mark-
ers. The other metrics correspond to the ss-min-...

options. This option is useful for evaluating the effects
of the --ss-... options.

As explained above, the image-specific command-line
arguments for the default image gforth.fi consist of a
sequence of filenames and -e forth-code options that are
interpreted in the sequence in which they are given. The -e
forth-code or --evaluate forth-code option evaluates
the Forth code. This option takes only one argument; if
you want to evaluate more Forth words, you have to quote

Chapter 2: Gforth Environment 10

them or use -e several times. To exit after processing
the command line (instead of entering interactive mode)
append -e bye to the command line. You can also process
the command-line arguments with a Forth program (see
Section 5.20 [OS command line arguments], page 265).

If you have several versions of Gforth installed,
gforth will invoke the version that was installed last.
gforth-<version> invokes a specific version. If your
environment contains the variable GFORTHPATH, you may
want to override it by using the --path option.

On startup, before processing any of the image
option, the user initialization file either specified in
the environment variable GFORTH_ENV or, if not set,
~/.config/gforthrc0 is included, if it exists. If GFORTH_
ENV is “off,” nothing is included. After processing all the
image options and just before printing the boot message,
the user initialization file ~/.config/gforthrc from your
home directory is included, unless the option --no-rc is
given.

2.2 Leaving Gforth

You can leave Gforth by typing bye or Ctrl-d (at the
start of a line) or (if you invoked Gforth with the --die-

on-signal option) Ctrl-c. When you leave Gforth, all
of your definitions and data are discarded. For ways of
saving the state of the system before leaving Gforth see
Chapter 13 [Image Files], page 431.

bye (–) unknown “bye”

2.3 Help on Gforth

Gforth has a simple, text-based online help system.

Chapter 2: Gforth Environment 11

help ("rest-of-line" –) gforth “help”

If no name is given, show basic help. If a documenta-
tion node name is given followed by "::", show the start of
the node. If the name of a word is given, show the docu-
mentation of the word if it exists, or its source code if not.
Use g to enter the editor at the point shown by help.

authors (–) unknown “authors”

show the list of authors

license (–) gforth “license”

print the license statement

2.4 Command-line editing

Gforth maintains a history file that records every line that
you type to the text interpreter. This file is preserved
between sessions, and is used to provide a command-line
recall facility; if you type Ctrl-P repeatedly you can re-
call successively older commands from this (or previous)
session(s). The full list of command-line editing facilities
is:

• Ctrl-p (“previous”) (or up-arrow) to recall successively
older commands from the history buffer.

• Ctrl-n (“next”) (or down-arrow) to recall successively
newer commands from the history buffer.

• Ctrl-f (or right-arrow) to move the cursor right, non-
destructively.

• Ctrl-b (or left-arrow) to move the cursor left, non-
destructively.

• Ctrl-h (backspace) to delete the character to the left
of the cursor, closing up the line.

Chapter 2: Gforth Environment 12

• Ctrl-k to delete (“kill”) from the cursor to the end of
the line.

• Ctrl-a to move the cursor to the start of the line.

• Ctrl-e to move the cursor to the end of the line.

• RET (Ctrl-m) or LFD (Ctrl-j) to submit the current
line.

• TAB to step through all possible full-word completions
of the word currently being typed.

• Ctrl-d on an empty line line to terminate Gforth
(gracefully, using bye).

• Ctrl-x (or Ctrl-d on a non-empty line) to delete the
character under the cursor.

When editing, displayable characters are inserted to the
left of the cursor position; the line is always in “insert” (as
opposed to “overstrike”) mode.

On Unix systems, the history file is
~/.local/share/gforth/history by default1. You
can find out the name and location of your history file
using:

history-file type \ Unix-class systems

history-file type \ Other systems

history-dir type

If you enter long definitions by hand, you can use a
text editor to paste them out of the history file into a
Forth source file for reuse at a later time.

Gforth never trims the size of the history file, so you
should do this periodically, if necessary.

1 i.e. it is stored in the user’s home directory.

Chapter 2: Gforth Environment 13

2.5 Environment variables

Gforth uses these environment variables:

• GFORTHHIST – (Unix systems only) specifies the
path for the history file .gforth-history. Default:
$HOME/.gforth-history.

• GFORTHPATH – specifies the path used when searching
for the gforth image file and for Forth source-code
files (usually ‘.’, the current working directory).
Path separator is ‘:’, a typical path would be
/usr/local/share/gforth/0.8.0:..

• LANG – see LC_CTYPE

• LC_ALL – see LC_CTYPE

• LC_CTYPE – If this variable contains “UTF-8” on Gforth
startup, Gforth uses the UTF-8 encoding for strings
internally and expects its input and produces its output
in UTF-8 encoding, otherwise the encoding is 8bit (see
see Section 5.19.10 [Xchars and Unicode], page 261).
If this environment variable is unset, Gforth looks in
LC_ALL, and if that is unset, in LANG.

•
GFORTHSYSTEMPREFIX – specifies what to prepend
to the argument of system before passing it to C’s
system(). Default: "./$COMSPEC /c " on Windows,
"" on other OSs. The prefix and the command are
directly concatenated, so if a space between them is
necessary, append it to the prefix.

• GFORTH – used by gforthmi, See Section 13.5.1
[gforthmi], page 436.

• GFORTHD – used by gforthmi, See Section 13.5.1
[gforthmi], page 436.

Chapter 2: Gforth Environment 14

• TMP, TEMP - (non-Unix systems only) used as a potential
location for the history file.

All the Gforth environment variables default to sensible
values if they are not set.

2.6 Gforth files

When you install Gforth on a Unix system, it installs files
in these locations by default:

• /usr/local/bin/gforth

• /usr/local/bin/gforthmi

• /usr/local/man/man1/gforth.1 - man page.

• /usr/local/info - the Info version of this manual.

• /usr/local/lib/gforth/<version>/... - Gforth .fi
files.

• /usr/local/share/gforth/<version>/TAGS - Emacs
TAGS file.

• /usr/local/share/gforth/<version>/... - Gforth
source files.

• .../emacs/site-lisp/gforth.el - Emacs gforth
mode.

You can select different places for installation by using
configure options (listed with configure --help).

2.7 Gforth in pipes

Gforth can be used in pipes created elsewhere (described
in the following). It can also create pipes on its own (see
Section 5.19.9 [Pipes], page 261).

If you pipe into Gforth, your program should read with
read-file or read-line from stdin (see Section 5.17.2

Chapter 2: Gforth Environment 15

[General files], page 223). Key does not recognize the end
of input. Words like accept echo the input and are there-
fore usually not useful for reading from a pipe. You have
to invoke the Forth program with an OS command-line
option, as you have no chance to use the Forth command
line (the text interpreter would try to interpret the pipe
input).

You can output to a pipe with type, emit, cr etc.

When you write to a pipe that has been closed at
the other end, Gforth receives a SIGPIPE signal (“pipe
broken”). Gforth translates this into the exception
broken-pipe-error. If your application does not catch
that exception, the system catches it and exits, usually
silently (unless you were working on the Forth command
line; then it prints an error message and exits). This is
usually the desired behaviour.

If you do not like this behaviour, you have to catch the
exception yourself, and react to it.

Here’s an example of an invocation of Gforth that is
usable in a pipe:

gforth -e ": foo begin pad dup 10 stdin read-file throw dup while \

type repeat ; foo bye"

This example just copies the input verbatim to the out-
put. A very simple pipe containing this example looks like
this:

cat startup.fs |

gforth -e ": foo begin pad dup 80 stdin read-file throw dup while \

type repeat ; foo bye"|

head

Pipes involving Gforth’s stderr output do not work.

Chapter 2: Gforth Environment 16

2.8 Startup speed

If Gforth is used for CGI scripts or in shell scripts, its
startup speed may become a problem. On a 3GHz Core
2 Duo E8400 under 64-bit Linux 2.6.27.8 with libc-2.7,
gforth-fast -e bye takes 13.1ms user and 1.2ms system
time (gforth -e bye is faster on startup with about 3.4ms
user time and 1.2ms system time, because it subsumes
some of the options discussed below).

If startup speed is a problem, you may consider the
following ways to improve it; or you may consider ways
to reduce the number of startups (for example, by using
Fast-CGI). Note that the first steps below improve the
startup time at the cost of run-time (including compile-
time), so whether they are profitable depends on the bal-
ance of these times in your application.

An easy step that influences Gforth startup speed is
the use of a number of options that increase run-time, but
decrease image-loading time.

The first of these that you should try is --ss-number=0
--ss-states=1 because this option buys relatively lit-
tle run-time speedup and costs quite a bit of time at
startup. gforth-fast --ss-number=0 --ss-states=1 -

e bye takes about 2.8ms user and 1.5ms system time.

The next option is --no-dynamic which has a sub-
stantial impact on run-time (about a factor of 2 on
several platforms), but still makes startup speed a lit-
tle faster: gforth-fast --ss-number=0 --ss-states=1

--no-dynamic -e bye consumes about 2.6ms user and
1.2ms system time.

The next step to improve startup speed is to use a data-
relocatable image (see Section 13.4 [Data-Relocatable

Chapter 2: Gforth Environment 17

Image Files], page 435). This avoids the relocation cost
for the code in the image (but not for the data). Note
that the image is then specific to the particular binary
you are using (i.e., whether it is gforth, gforth-fast,
and even the particular build). You create the data-
relocatable image that works with ./gforth-fast with
GFORTHD="./gforth-fast --no-dynamic" gforthmi

gforthdr.fi (the --no-dynamic is required here or the
image will not work). And you run it with gforth-fast

-i gforthdr.fi ... -e bye (the flags discussed above
don’t matter here, because they only come into play on
relocatable code). gforth-fast -i gforthdr.fi -e bye

takes about 1.1ms user and 1.2ms system time.

One step further is to avoid all relocation cost and part
of the copy-on-write cost through using a non-relocatable
image (see Section 13.3 [Non-Relocatable Image Files],
page 434). However, this has the disadvantage that it
does not work on operating systems with address space
randomization (the default in, e.g., Linux nowadays), or if
the dictionary moves for any other reason (e.g., because of
a change of the OS kernel or an updated library), so we
cannot really recommend it. You create a non-relocatable
image with gforth-fast --no-dynamic -e "savesystem

gforthnr.fi bye" (the --no-dynamic is required here,
too). And you run it with gforth-fast -i gforthnr.fi

... -e bye (again the flags discussed above don’t matter).
gforth-fast -i gforthdr.fi -e bye takes about 0.9ms
user and 0.9ms system time.

If the script you want to execute contains a significant
amount of code, it may be profitable to compile it into the
image to avoid the cost of compiling it at startup time.

18

3 Forth Tutorial

The difference of this chapter from the Introduction (see
Chapter 4 [Introduction], page 68) is that this tutorial is
more fast-paced, should be used while sitting in front of a
computer, and covers much more material, but does not
explain how the Forth system works.

This tutorial can be used with any Standard-compliant
Forth; any Gforth-specific features are marked as such and
you can skip them if you work with another Forth. This
tutorial does not explain all features of Forth, just enough
to get you started and give you some ideas about the facil-
ities available in Forth. Read the rest of the manual when
you are through this.

The intended way to use this tutorial is that you work
through it while sitting in front of the console, take a look
at the examples and predict what they will do, then try
them out; if the outcome is not as expected, find out why
(e.g., by trying out variations of the example), so you un-
derstand what’s going on. There are also some assignments
that you should solve.

This tutorial assumes that you have programmed be-
fore and know what, e.g., a loop is.

3.1 Starting Gforth

You can start Gforth by typing its name:

gforth

That puts you into interactive mode; you can leave
Gforth by typing bye. While in Gforth, you can edit the
command line and access the command line history with
cursor keys, similar to bash.

Chapter 3: Forth Tutorial 19

3.2 Syntax

A word is a sequence of arbitrary characters (except white
space). Words are separated by white space. E.g., each of
the following lines contains exactly one word:

word

!@#$%^&*()

1234567890

5!a

A frequent beginner’s error is to leave out necessary
white space, resulting in an error like ‘Undefined word’;
so if you see such an error, check if you have put spaces
wherever necessary.

." hello, world" \ correct

."hello, world" \ gives an "Undefined word" error

Gforth and most other Forth systems ignore differences
in case (they are case-insensitive), i.e., ‘word’ is the same
as ‘Word’. If your system is case-sensitive, you may have
to type all the examples given here in upper case.

3.3 Crash Course

Forth does not prevent you from shooting yourself in the
foot. Let’s try a few ways to crash Gforth:

0 0 !

here execute

’ catch >body 20 erase abort

’ (quit1) >body 20 erase

The last two examples are guaranteed to destroy im-
portant parts of Gforth (and most other systems), so you
better leave Gforth afterwards (if it has not finished by

Chapter 3: Forth Tutorial 20

itself). On some systems you may have to kill gforth from
outside (e.g., in Unix with kill).

You will find out later what these lines do and then you
will get an idea why they produce crashes.

Now that you know how to produce crashes (and that
there’s not much to them), let’s learn how to produce
meaningful programs.

3.4 Stack

The most obvious feature of Forth is the stack. When
you type in a number, it is pushed on the stack. You can
display the contents of the stack with .s.

1 2 .s

3 .s

.s displays the top-of-stack to the right, i.e., the num-
bers appear in .s output as they appeared in the input.

You can print the top element of the stack with ..

1 2 3 . . .

In general, words consume their stack arguments (.s is
an exception).

Assignment: What does the stack contain after 5 6 7 .?

3.5 Arithmetics

The words +, -, *, /, and mod always operate on the top
two stack items:

2 2 .s

+ .s

.

2 1 - .

Chapter 3: Forth Tutorial 21

7 3 mod .

The operands of -, /, and mod are in the same order as
in the corresponding infix expression (this is generally the
case in Forth).

Parentheses are superfluous (and not available), be-
cause the order of the words unambiguously determines
the order of evaluation and the operands:

3 4 + 5 * .

3 4 5 * + .

Assignment: What are the infix expressions corresponding
to the Forth code above? Write 6-7*8+9 in Forth nota-
tion1.

To change the sign, use negate:

2 negate .

Assignment: Convert -(-3)*4-5 to Forth.

/mod performs both / and mod.

7 3 /mod . .

Reference: Section 5.5 [Arithmetic], page 95.

3.6 Stack Manipulation

Stack manipulation words rearrange the data on the stack.

1 .s drop .s

1 .s dup .s drop drop .s

1 2 .s over .s drop drop drop

1 2 .s swap .s drop drop

1 2 3 .s rot .s drop drop drop

1 This notation is also known as Postfix or RPN (Reverse Polish
Notation).

Chapter 3: Forth Tutorial 22

These are the most important stack manipulation
words. There are also variants that manipulate twice as
many stack items:

1 2 3 4 .s 2swap .s 2drop 2drop

Two more stack manipulation words are:

1 2 .s nip .s drop

1 2 .s tuck .s 2drop drop

Assignment: Replace nip and tuck with combinations of
other stack manipulation words.

Given: How do you get:

1 2 3 3 2 1

1 2 3 1 2 3 2

1 2 3 1 2 3 3

1 2 3 1 3 3

1 2 3 2 1 3

1 2 3 4 4 3 2 1

1 2 3 1 2 3 1 2 3

1 2 3 4 1 2 3 4 1 2

1 2 3

1 2 3 1 2 3 4

1 2 3 1 3

5 dup * .

Assignment: Write 17^3 and 17^4 in Forth, without writ-
ing 17 more than once. Write a piece of Forth code that
expects two numbers on the stack (a and b, with b on top)
and computes (a-b)(a+1).

Reference: Section 5.6 [Stack Manipulation], page 113.

3.7 Using files for Forth code

While working at the Forth command line is convenient
for one-line examples and short one-off code, you proba-

Chapter 3: Forth Tutorial 23

bly want to store your source code in files for convenient
editing and persistence. You can use your favourite editor
(Gforth includes Emacs support, see Chapter 12 [Emacs
and Gforth], page 425) to create file.fs and use

s" file.fs" included

to load it into your Forth system. The file name exten-
sion I use for Forth files is ‘.fs’.

You can easily start Gforth with some files loaded like
this:

gforth file1.fs file2.fs

If an error occurs during loading these files, Gforth ter-
minates, whereas an error during INCLUDED within Gforth
usually gives you a Gforth command line. Starting the
Forth system every time gives you a clean start every time,
without interference from the results of earlier tries.

I often put all the tests in a file, then load the code and
run the tests with

gforth code.fs tests.fs -e bye

(often by performing this command with C-x C-e in
Emacs). The -e bye ensures that Gforth terminates af-
terwards so that I can restart this command without ado.

The advantage of this approach is that the tests can
be repeated easily every time the program ist changed,
making it easy to catch bugs introduced by the change.

Reference: Section 5.17.1 [Forth source files], page 221.

3.8 Comments

\ That’s a comment; it ends at the end of the line

(Another comment; it ends here:) .s

Chapter 3: Forth Tutorial 24

\ and (are ordinary Forth words and therefore have to
be separated with white space from the following text.

\This gives an "Undefined word" error

The first) ends a comment started with (, so you can-
not nest (-comments; and you cannot comment out text
containing a) with (...)2.

I use \-comments for descriptive text and for comment-
ing out code of one or more line; I use (-comments for
describing the stack effect, the stack contents, or for com-
menting out sub-line pieces of code.

The Emacs mode gforth.el (see Chapter 12 [Emacs
and Gforth], page 425) supports these uses by commenting
out a region with C-x \, uncommenting a region with C-u

C-x \, and filling a \-commented region with M-q.

Reference: Section 5.3 [Comments], page 94.

3.9 Colon Definitions

are similar to procedures and functions in other program-
ming languages.

: squared (n -- n^2)

dup * ;

5 squared .

7 squared .

: starts the colon definition; its name is squared. The
following comment describes its stack effect. The words
dup * are not executed, but compiled into the definition.
; ends the colon definition.

2 therefore it’s a good idea to avoid) in word names.

Chapter 3: Forth Tutorial 25

The newly-defined word can be used like any other
word, including using it in other definitions:

: cubed (n -- n^3)

dup squared * ;

-5 cubed .

: fourth-power (n -- n^4)

squared squared ;

3 fourth-power .

Assignment: Write colon definitions for nip, tuck,
negate, and /mod in terms of other Forth words, and
check if they work (hint: test your tests on the originals
first). Don’t let the ‘redefined’-Messages spook you,
they are just warnings.

Reference: Section 5.9.5 [Colon Definitions], page 158.

3.10 Decompilation

You can decompile colon definitions with see:

see squared

see cubed

In Gforth see shows you a reconstruction of the source
code from the executable code. Informations that were
present in the source, but not in the executable code, are
lost (e.g., comments).

You can also decompile the predefined words:

see .

see +

3.11 Stack-Effect Comments

By convention the comment after the name of a definition
describes the stack effect: The part in front of the ‘--’

Chapter 3: Forth Tutorial 26

describes the state of the stack before the execution of
the definition, i.e., the parameters that are passed into the
colon definition; the part behind the ‘--’ is the state of the
stack after the execution of the definition, i.e., the results
of the definition. The stack comment only shows the top
stack items that the definition accesses and/or changes.

You should put a correct stack effect on every defini-
tion, even if it is just (--). You should also add some
descriptive comment to more complicated words (I usu-
ally do this in the lines following :). If you don’t do this,
your code becomes unreadable (because you have to work
through every definition before you can understand any).

Assignment: The stack effect of swap can be written like
this: x1 x2 -- x2 x1. Describe the stack effect of -, drop,
dup, over, rot, nip, and tuck. Hint: When you are done,
you can compare your stack effects to those in this manual
(see [Word Index], page 506).

Sometimes programmers put comments at various
places in colon definitions that describe the contents of
the stack at that place (stack comments); i.e., they are
like the first part of a stack-effect comment. E.g.,

: cubed (n -- n^3)

dup squared (n n^2) * ;

In this case the stack comment is pretty superfluous,
because the word is simple enough. If you think it would
be a good idea to add such a comment to increase readabil-
ity, you should also consider factoring the word into sev-
eral simpler words (see Section 3.13 [Factoring], page 29),
which typically eliminates the need for the stack comment;
however, if you decide not to refactor it, then having such
a comment is better than not having it.

Chapter 3: Forth Tutorial 27

The names of the stack items in stack-effect and stack
comments in the standard, in this manual, and in many
programs specify the type through a type prefix, similar
to Fortran and Hungarian notation. The most frequent
prefixes are:

n

signed integer

u

unsigned integer

c

character

f

Boolean flags, i.e. false or true.

a-addr,a-

Cell-aligned address

c-addr,c-

Char-aligned address (note that a Char may have two
bytes in Windows NT)

xt

Execution token, same size as Cell

w,x

Cell, can contain an integer or an address. It usually
takes 32, 64 or 16 bits (depending on your platform and
Forth system). A cell is more commonly known as ma-
chine word, but the term word already means something
different in Forth.

d

signed double-cell integer

Chapter 3: Forth Tutorial 28

ud

unsigned double-cell integer

r

Float (on the FP stack)

You can find a more complete list in Section 5.1 [Nota-
tion], page 90.

Assignment: Write stack-effect comments for all defini-
tions you have written up to now.

3.12 Types

In Forth the names of the operations are not overloaded; so
similar operations on different types need different names;
e.g., + adds integers, and you have to use f+ to add
floating-point numbers. The following prefixes are often
used for related operations on different types:

(none)

signed integer

u

unsigned integer

c

character

d

signed double-cell integer

ud, du

unsigned double-cell integer

2

two cells (not-necessarily double-cell numbers)

m, um

mixed single-cell and double-cell operations

Chapter 3: Forth Tutorial 29

f

floating-point (note that in stack comments ‘f’ repre-
sents flags, and ‘r’ represents FP numbers; also, you need
to include the exponent part in literal FP numbers, see
Section 3.26 [Floating Point Tutorial], page 47).

If there are no differences between the signed and the
unsigned variant (e.g., for +), there is only the prefix-less
variant.

Forth does not perform type checking, neither at com-
pile time, nor at run time. If you use the wrong operation,
the data are interpreted incorrectly:

-1 u.

If you have only experience with type-checked lan-
guages until now, and have heard how important type-
checking is, don’t panic! In my experience (and that of
other Forthers), type errors in Forth code are usually easy
to find (once you get used to it), the increased vigilance
of the programmer tends to catch some harder errors in
addition to most type errors, and you never have to work
around the type system, so in most situations the lack
of type-checking seems to be a win (projects to add type
checking to Forth have not caught on).

3.13 Factoring

If you try to write longer definitions, you will soon find it
hard to keep track of the stack contents. Therefore, good
Forth programmers tend to write only short definitions
(e.g., three lines). The art of finding meaningful short
definitions is known as factoring (as in factoring polyno-
mials).

Chapter 3: Forth Tutorial 30

Well-factored programs offer additional advantages:
smaller, more general words, are easier to test and debug
and can be reused more and better than larger, specialized
words.

So, if you run into difficulties with stack management,
when writing code, try to define meaningful factors for
the word, and define the word in terms of those. Even if
a factor contains only two words, it is often helpful.

Good factoring is not easy, and it takes some practice
to get the knack for it; but even experienced Forth pro-
grammers often don’t find the right solution right away,
but only when rewriting the program. So, if you don’t
come up with a good solution immediately, keep trying,
don’t despair.

3.14 Designing the stack effect

In other languages you can use an arbitrary order of pa-
rameters for a function; and since there is only one result,
you don’t have to deal with the order of results, either.

In Forth (and other stack-based languages, e.g., Post-
Script) the parameter and result order of a definition is im-
portant and should be designed well. The general guideline
is to design the stack effect such that the word is simple
to use in most cases, even if that complicates the imple-
mentation of the word. Some concrete rules are:

• Words consume all of their parameters (e.g., .).

• If there is a convention on the order of parameters (e.g.,
from mathematics or another programming language),
stick with it (e.g., -).

• If one parameter usually requires only a short compu-
tation (e.g., it is a constant), pass it on the top of the

Chapter 3: Forth Tutorial 31

stack. Conversely, parameters that usually require a
long sequence of code to compute should be passed as
the bottom (i.e., first) parameter. This makes the code
easier to read, because the reader does not need to keep
track of the bottom item through a long sequence of
code (or, alternatively, through stack manipulations).
E.g., ! (store, see Section 5.7 [Memory], page 117) ex-
pects the address on top of the stack because it is usu-
ally simpler to compute than the stored value (often
the address is just a variable).

• Similarly, results that are usually consumed quickly
should be returned on the top of stack, whereas a re-
sult that is often used in long computations should
be passed as bottom result. E.g., the file words like
open-file return the error code on the top of stack,
because it is usually consumed quickly by throw; more-
over, the error code has to be checked before doing any-
thing with the other results.

These rules are just general guidelines, don’t lose sight
of the overall goal to make the words easy to use. E.g., if
the convention rule conflicts with the computation-length
rule, you might decide in favour of the convention if the
word will be used rarely, and in favour of the computation-
length rule if the word will be used frequently (because
with frequent use the cost of breaking the computation-
length rule would be quite high, and frequent use makes
it easier to remember an unconventional order).

3.15 Local Variables

You can define local variables (locals) in a colon definition:

: swap { a b -- b a }

Chapter 3: Forth Tutorial 32

b a ;

1 2 swap .s 2drop

(If your Forth system does not support this syntax,
include compat/anslocal.fs first).

In this example { a b -- b a } is the locals definition;
it takes two cells from the stack, puts the top of stack in
b and the next stack element in a. -- starts a comment
ending with }. After the locals definition, using the name
of the local will push its value on the stack. You can omit
the comment part (-- b a):

: swap (x1 x2 -- x2 x1)

{ a b } b a ;

In Gforth you can have several locals definitions, any-
where in a colon definition; in contrast, in a standard pro-
gram you can have only one locals definition per colon
definition, and that locals definition must be outside any
control structure.

With locals you can write slightly longer definitions
without running into stack trouble. However, I recom-
mend trying to write colon definitions without locals for
exercise purposes to help you gain the essential factoring
skills.

Assignment: Rewrite your definitions until now with lo-
cals

Reference: Section 5.21 [Locals], page 267.

3.16 Conditional execution

In Forth you can use control structures only inside colon
definitions. An if-structure looks like this:

: abs (n1 -- +n2)

Chapter 3: Forth Tutorial 33

dup 0 < if

negate

endif ;

5 abs .

-5 abs .

if takes a flag from the stack. If the flag is non-zero
(true), the following code is performed, otherwise execu-
tion continues after the endif (or else). < compares the
top two stack elements and produces a flag:

1 2 < .

2 1 < .

1 1 < .

Actually the standard name for endif is then. This
tutorial presents the examples using endif, because this
is often less confusing for people familiar with other pro-
gramming languages where then has a different meaning.
If your system does not have endif, define it with

: endif postpone then ; immediate

You can optionally use an else-part:

: min (n1 n2 -- n)

2dup < if

drop

else

nip

endif ;

2 3 min .

3 2 min .

Assignment: Write min without else-part (hint: what’s
the definition of nip?).

Reference: Section 5.8.1 [Selection], page 128.

Chapter 3: Forth Tutorial 34

3.17 Flags and Comparisons

In a false-flag all bits are clear (0 when interpreted as in-
teger). In a canonical true-flag all bits are set (-1 as a
twos-complement signed integer); in many contexts (e.g.,
if) any non-zero value is treated as true flag.

false .

true .

true hex u. decimal

Comparison words produce canonical flags:

1 1 = .

1 0= .

0 1 < .

0 0 < .

-1 1 u< . \ type error, u< interprets -1 as large unsigned number

-1 1 < .

Gforth supports all combinations of the prefixes 0 u

d d0 du f f0 (or none) and the comparisons = <> < > <=

>=. Only a part of these combinations are standard (for
details see the standard, Section 5.5.7 [Numeric compari-
son], page 108, Section 5.5.8 [Floating Point], page 109, or
[Word Index], page 506).

You can use and or xor invert as operations on
canonical flags. Actually they are bitwise operations:

1 2 and .

1 2 or .

1 3 xor .

1 invert .

You can convert a zero/non-zero flag into a canonical
flag with 0<> (and complement it on the way with 0=;
indeed, it is more common to use 0= instead of invert for
canonical flags).

Chapter 3: Forth Tutorial 35

1 0= .

1 0<> .

While you can use if without 0<> to test for zero/non-
zero, you sometimes need to use 0<> when combining
zero/non-zero values with and or xor because of their bit-
wise nature. The simplest, least error-prone, and proba-
bly clearest way is to use 0<> in all these cases, but in
some cases you can use fewer 0<>s. Here are some stack
effects, where fc represents a canonical flag, and fz repre-
sents zero/non-zero (every fc also works as fz):

or (fz1 fz2 -- fz3)

and (fz1 fc -- fz2)

and (fc fz1 -- fz2)

So, if you see code like this:

(n1 n2) 0<> and if

This tests whether n1 and n2 are non-zero and if yes,
performs the code after if; it treats n1 as zero/non-zero
and uses 0<> to convert n2 into a canonical flag; the and

then produces an fz, which is consumed by the if.

You can use the all-bits-set feature of canonical flags
and the bitwise operation of the Boolean operations to
avoid ifs:

: foo (n1 -- n2)

0= if

14

else

0

endif ;

0 foo .

1 foo .

Chapter 3: Forth Tutorial 36

: foo (n1 -- n2)

0= 14 and ;

0 foo .

1 foo .

Assignment: Write min without if.

For reference, see Section 5.4 [Boolean Flags], page 95,
Section 5.5.7 [Numeric comparison], page 108, and
Section 5.5.6 [Bitwise operations], page 105.

3.18 General Loops

The endless loop is the most simple one:

: endless (--)

0 begin

dup . 1+

again ;

endless

Terminate this loop by pressing Ctrl-C (in Gforth).
begin does nothing at run-time, again jumps back to
begin.

A loop with one exit at any place looks like this:

: log2 (+n1 -- n2)

\ logarithmus dualis of n1>0, rounded down to the next integer

assert(dup 0>)

2/ 0 begin

over 0> while

1+ swap 2/ swap

repeat

nip ;

7 log2 .

8 log2 .

Chapter 3: Forth Tutorial 37

At run-time while consumes a flag; if it is 0, execution
continues behind the repeat; if the flag is non-zero, exe-
cution continues behind the while. Repeat jumps back to
begin, just like again.

In Forth there are a number of combina-
tions/abbreviations, like 1+. However, 2/ is not
one of them; it shifts its argument right by one bit
(arithmetic shift right), and viewed as division that
always rounds towards negative infinity (floored division),
like Gforth’s / (since Gforth 0.7), but unlike / in many
other Forth systems.

-5 2 / . \ -2 or -3

-5 2/ . \ -3

assert(is no standard word, but you can get it on sys-
tems other than Gforth by including compat/assert.fs.
You can see what it does by trying

0 log2 .

Here’s a loop with an exit at the end:

: log2 (+n1 -- n2)

\ logarithmus dualis of n1>0, rounded down to the next integer

assert(dup 0 >)

-1 begin

1+ swap 2/ swap

over 0 <=

until

nip ;

Until consumes a flag; if it is zero, execution continues
at the begin, otherwise after the until.

Assignment: Write a definition for computing the greatest
common divisor.

Reference: Section 5.8.2 [Simple Loops], page 131.

Chapter 3: Forth Tutorial 38

3.19 Counted loops

: ^ (n1 u -- n)

\ n = the uth power of n1

1 swap 0 u+do

over *

loop

nip ;

3 2 ^ .

4 3 ^ .

U+do (from compat/loops.fs, if your Forth system
doesn’t have it) takes two numbers of the stack (u3 u4

--), and then performs the code between u+do and loop

for u3-u4 times (or not at all, if u3-u4<0).

You can see the stack effect design rules at work in the
stack effect of the loop start words: Since the start value
of the loop is more frequently constant than the end value,
the start value is passed on the top-of-stack.

You can access the counter of a counted loop with i:

: fac (u -- u!)

1 swap 1+ 1 u+do

i *

loop ;

5 fac .

7 fac .

There is also +do, which expects signed numbers (im-
portant for deciding whether to enter the loop).

Assignment: Write a definition for computing the nth Fi-
bonacci number.

You can also use increments other than 1:

: up2 (n1 n2 --)

Chapter 3: Forth Tutorial 39

+do

i .

2 +loop ;

10 0 up2

: down2 (n1 n2 --)

-do

i .

2 -loop ;

0 10 down2

Reference: Section 5.8.3 [Counted Loops], page 132.

3.20 Recursion

Usually the name of a definition is not visible in the defi-
nition; but earlier definitions are usually visible:

1 0 / . \ "Floating-point unidentified fault" in Gforth on some platforms

: / (n1 n2 -- n)

dup 0= if

-10 throw \ report division by zero

endif

/ \ old version

;

1 0 /

For recursive definitions you can use recursive (non-
standard) or recurse:

: fac1 (n -- n!) recursive

dup 0> if

dup 1- fac1 *

else

drop 1

endif ;

Chapter 3: Forth Tutorial 40

7 fac1 .

: fac2 (n -- n!)

dup 0> if

dup 1- recurse *

else

drop 1

endif ;

8 fac2 .

Assignment: Write a recursive definition for computing
the nth Fibonacci number.

Reference (including indirect recursion): See
Section 5.8.7 [Calls and returns], page 145.

3.21 Leaving definitions or loops

EXIT exits the current definition right away. For every
counted loop that is left in this way, an UNLOOP has to be
performed before the EXIT:

: ...

... u+do

... if

... unloop exit

endif

...

loop

... ;

LEAVE leaves the innermost counted loop right away:

: ...

... u+do

... if

... leave

Chapter 3: Forth Tutorial 41

endif

...

loop

... ;

Reference: Section 5.8.7 [Calls and returns], page 145,
Section 5.8.3 [Counted Loops], page 132.

3.22 Return Stack

In addition to the data stack Forth also has a second stack,
the return stack; most Forth systems store the return ad-
dresses of procedure calls there (thus its name). Program-
mers can also use this stack:

: foo (n1 n2 --)

.s

>r .s

r@ .

>r .s

r@ .

r> .

r@ .

r> . ;

1 2 foo

>r takes an element from the data stack and pushes
it onto the return stack; conversely, r> moves an element
from the return to the data stack; r@ pushes a copy of the
top of the return stack on the data stack.

Forth programmers usually use the return stack for
storing data temporarily, if using the data stack alone
would be too complex, and factoring and locals are not
an option:

: 2swap (x1 x2 x3 x4 -- x3 x4 x1 x2)

Chapter 3: Forth Tutorial 42

rot >r rot r> ;

The return address of the definition and the loop con-
trol parameters of counted loops usually reside on the re-
turn stack, so you have to take all items, that you have
pushed on the return stack in a colon definition or counted
loop, from the return stack before the definition or loop
ends. You cannot access items that you pushed on the
return stack outside some definition or loop within the
definition of loop.

If you miscount the return stack items, this usually ends
in a crash:

: crash (n --)

>r ;

5 crash

You cannot mix using locals and using the return stack
(according to the standard; Gforth has no problem). How-
ever, they solve the same problems, so this shouldn’t be
an issue.

Assignment: Can you rewrite any of the definitions you
wrote until now in a better way using the return stack?

Reference: Section 5.6.3 [Return stack], page 115.

3.23 Memory

You can create a global variable v with

variable v (-- addr)

v pushes the address of a cell in memory on the stack.
This cell was reserved by variable. You can use ! (store)
to store values from the stack into this cell and @ (fetch)
to load the value from memory onto the stack:

v .

Chapter 3: Forth Tutorial 43

5 v ! .s

v @ .

You can see a raw dump of memory with dump:

v 1 cells .s dump

Cells (n1 -- n2) gives you the number of bytes (or,
more generally, address units (aus)) that n1 cells occupy.
You can also reserve more memory:

create v2 20 cells allot

v2 20 cells dump

creates a variable-like word v2 and reserves 20 unini-
tialized cells; the address pushed by v2 points to the start
of these 20 cells (see Section 5.9.1 [CREATE], page 153).
You can use address arithmetic to access these cells:

3 v2 5 cells + !

v2 20 cells dump

You can reserve and initialize memory with ,:

create v3

5 , 4 , 3 , 2 , 1 ,

v3 @ .

v3 cell+ @ .

v3 2 cells + @ .

v3 5 cells dump

Assignment: Write a definition vsum (addr u -- n) that
computes the sum of u cells, with the first of these cells at
addr, the next one at addr cell+ etc.

The difference between variable and create is that
variable allots a cell, and that you cannot allot additional
memory to a variable in standard Forth.

You can also reserve memory without creating a new
word:

here 10 cells allot .

Chapter 3: Forth Tutorial 44

here .

The first here pushes the start address of the memory
area, the second here the address after the dictionary area.
You should store the start address somewhere, or you will
have a hard time finding the memory area again.

Allot manages dictionary memory. The dictionary
memory contains the system’s data structures for words
etc. on Gforth and most other Forth systems. It is man-
aged like a stack: You can free the memory that you have
just alloted with

-10 cells allot

here .

Note that you cannot do this if you have created a new
word in the meantime (because then your alloted memory
is no longer on the top of the dictionary “stack”).

Alternatively, you can use allocate and free which
allow freeing memory in any order:

10 cells allocate throw .s

20 cells allocate throw .s

swap

free throw

free throw

The throws deal with errors (e.g., out of memory).

And there is also a garbage collector (http://www.
complang.tuwien.ac.at/forth/garbage-collection.

zip), which eliminates the need to freememory explicitly.

Reference: Section 5.7 [Memory], page 117.

http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Chapter 3: Forth Tutorial 45

3.24 Characters and Strings

On the stack characters take up a cell, like numbers. In
memory they have their own size (one 8-bit byte on most
systems), and therefore require their own words for mem-
ory access:

create v4

104 c, 97 c, 108 c, 108 c, 111 c,

v4 4 chars + c@ .

v4 5 chars dump

The preferred representation of strings on the stack
is addr u-count, where addr is the address of the first
character and u-count is the number of characters in the
string.

v4 5 type

You get a string constant with

s" hello, world" .s

type

Make sure you have a space between s" and the string;
s" is a normal Forth word and must be delimited with
white space (try what happens when you remove the
space).

However, this interpretive use of s" is quite restricted:
the string exists only until the next call of s" (some Forth
systems keep more than one of these strings, but usually
they still have a limited lifetime).

s" hello," s" world" .s

type

type

You can also use s" in a definition, and the resulting
strings then live forever (well, for as long as the definition):

Chapter 3: Forth Tutorial 46

: foo s" hello," s" world" ;

foo .s

type

type

Assignment: Emit (c --) types c as character (not a
number). Implement type (addr u --).

Reference: Section 5.7.6 [Memory Blocks], page 126.

3.25 Alignment

On many processors cells have to be aligned in memory, if
you want to access them with @ and ! (and even if the pro-
cessor does not require alignment, access to aligned cells
is faster).

Create aligns here (i.e., the place where the next allo-
cation will occur, and that the created word points to).
Likewise, the memory produced by allocate starts at an
aligned address. Adding a number of cells to an aligned
address produces another aligned address.

However, address arithmetic involving char+ and
chars can create an address that is not cell-aligned.
Aligned (addr -- a-addr) produces the next aligned
address:

v3 char+ aligned .s @ .

v3 char+ .s @ .

Similarly, align advances here to the next aligned ad-
dress:

create v5 97 c,

here .

align here .

1000 ,

Chapter 3: Forth Tutorial 47

Note that you should use aligned addresses even if your
processor does not require them, if you want your program
to be portable.

Reference: Section 5.7.5 [Address arithmetic], page 123.

3.26 Floating Point

Floating-point (FP) numbers and arithmetic in Forth
works mostly as one might expect, but there are a few
things worth noting:

The first point is not specific to Forth, but so
important and yet not universally known that I mention
it here: FP numbers are not reals. Many properties (e.g.,
arithmetic laws) that reals have and that one expects
of all kinds of numbers do not hold for FP numbers.
If you want to use FP computations, you should learn
about their problems and how to avoid them; a good
starting point is David Goldberg, What Every Computer
Scientist Should Know About Floating-Point Arithmetic
(http://docs.sun.com/source/806-3568/ncg_goldberg.html),
ACM Computing Surveys 23(1):5−48, March 1991.

In Forth source code literal FP numbers need an ex-
ponent, e.g., 1e0; this can also be written shorter as 1e,
longer as +1.0e+0, and many variations in between. The
reason for this is that, for historical reasons, Forth in-
terprets a decimal point alone (e.g., 1.) as indicating a
double-cell integer. Examples:

2e 2e f+ f.

Another requirement for literal FP numbers is that the
current base is decimal; with a hex base 1e is interpreted
as an integer.

http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html

Chapter 3: Forth Tutorial 48

Forth has a separate stack for FP numbers in confor-
mance with Forth-2012. One advantage of this model is
that cells are not in the way when accessing FP values,
and vice versa. Forth has a set of words for manipulating
the FP stack: fdup fswap fdrop fover frot and (non-
standard) fnip ftuck fpick.

FP arithmetic words are prefixed with F. There is the
usual set f+ f- f* f/ f** fnegate as well as a number of
words for other functions, e.g., fsqrt fsin fln fmin. One
word that you might expect is f=; but f= is non-standard,
because FP computation results are usually inaccurate, so
exact comparison is usually a mistake, and one should use
approximate comparison. Unfortunately, f~, the standard
word for that purpose, is not well designed, so Gforth pro-
vides f~abs and f~rel as well.

And of course there are words for accessing FP numbers
in memory (f@ f!), and for address arithmetic (floats
float+ faligned). There are also variants of these words
with an sf and df prefix for accessing IEEE format single-
precision and double-precision numbers in memory; their
main purpose is for accessing external FP data (e.g., that
has been read from or will be written to a file).

Here is an example of a dot-product word and its use:

: v* (f_addr1 nstride1 f_addr2 nstride2 ucount -- r)

>r swap 2swap swap 0e r> 0 ?DO

dup f@ over + 2swap dup f@ f* f+ over + 2swap

LOOP

2drop 2drop ;

create v 1.23e f, 4.56e f, 7.89e f,

v 1 floats v 1 floats 3 v* f.

Chapter 3: Forth Tutorial 49

Assignment: Write a program to solve a
quadratic equation. Then read Henry G. Baker,
You Could Learn a Lot from a Quadratic
(http://home.pipeline.com/~hbaker1/sigplannotices/sigcol05.ps.gz),
ACM SIGPLAN Notices, 33(1):30−39, January 1998, and
see if you can improve your program. Finally, find a test
case where the original and the improved version produce
different results.

Reference: Section 5.5.8 [Floating Point], page 109;
Section 5.6.2 [Floating point stack], page 115;
Section 5.13.2 [Number Conversion], page 199;
Section 5.7.4 [Memory Access], page 121; Section 5.7.5
[Address arithmetic], page 123.

3.27 Files

This section gives a short introduction into how to use files
inside Forth. It’s broken up into five easy steps:

1. Open an ASCII text file for input

2. Open a file for output

3. Read input file until string matches (or some other con-
dition is met)

4. Write some lines from input (modified or not) to output

5. Close the files.

Reference: Section 5.17.2 [General files], page 223.

3.27.1 Open file for input

s" foo.in" r/o open-file throw Value fd-in

3.27.2 Create file for output

s" foo.out" w/o create-file throw Value fd-out

http://home.pipeline.com/~hbaker1/sigplannotices/sigcol05.ps.gz
http://home.pipeline.com/~hbaker1/sigplannotices/sigcol05.ps.gz

Chapter 3: Forth Tutorial 50

The available file modes are r/o for read-only access,
r/w for read-write access, and w/o for write-only access.
You could open both files with r/w, too, if you like. All file
words return error codes; for most applications, it’s best
to pass there error codes with throw to the outer error
handler.

If you want words for opening and assigning, define
them as follows:

0 Value fd-in

0 Value fd-out

: open-input (addr u --) r/o open-file throw to fd-in ;

: open-output (addr u --) w/o create-file throw to fd-out ;

Usage example:

s" foo.in" open-input

s" foo.out" open-output

3.27.3 Scan file for a particular line

256 Constant max-line

Create line-buffer max-line 2 + allot

: scan-file (addr u --)

begin

line-buffer max-line fd-in read-line throw

while

>r 2dup line-buffer r> compare 0=

until

else

drop

then

2drop ;

Chapter 3: Forth Tutorial 51

read-line (addr u1 fd -- u2 flag ior) reads up to
u1 bytes into the buffer at addr, and returns the number
of bytes read, a flag that is false when the end of file is
reached, and an error code.

compare (addr1 u1 addr2 u2 -- n) compares two
strings and returns zero if both strings are equal. It
returns a positive number if the first string is lexically
greater, a negative if the second string is lexically greater.

We haven’t seen this loop here; it has two exits. Since
the while exits with the number of bytes read on the stack,
we have to clean up that separately; that’s after the else.

Usage example:

s" The text I search is here" scan-file

3.27.4 Copy input to output

: copy-file (--)

begin

line-buffer max-line fd-in read-line throw

while

line-buffer swap fd-out write-line throw

repeat

drop ;

3.27.5 Close files

fd-in close-file throw

fd-out close-file throw

Likewise, you can put that into definitions, too:

: close-input (--) fd-in close-file throw ;

: close-output (--) fd-out close-file throw ;

Assignment: How could you modify copy-file so that it
copies until a second line is matched? Can you write a

Chapter 3: Forth Tutorial 52

program that extracts a section of a text file, given the
line that starts and the line that terminates that section?

3.28 Interpretation and Compilation
Semantics and Immediacy

When a word is compiled, it behaves differently from being
interpreted. E.g., consider +:

1 2 + .

: foo + ;

These two behaviours are known as compilation and
interpretation semantics. For normal words (e.g., +), the
compilation semantics is to append the interpretation se-
mantics to the currently defined word (foo in the example
above). I.e., when foo is executed later, the interpreta-
tion semantics of + (i.e., adding two numbers) will be per-
formed.

However, there are words with non-default compilation
semantics, e.g., the control-flow words like if. You can use
immediate to change the compilation semantics of the last
defined word to be equal to the interpretation semantics:

: [FOO] (--)

5 . ; immediate

[FOO]

: bar (--)

[FOO] ;

bar

see bar

Two conventions to mark words with non-default com-
pilation semantics are names with brackets (more fre-

Chapter 3: Forth Tutorial 53

quently used) and to write them all in upper case (less
frequently used).

For some words, such as if, using their interpreta-
tion semantics is usually a mistake, so we mark them as
compile-only, and you get a warning when you interpret
them.

: flip (--)

6 . ; compile-only \ but not immediate

flip

: flop (--)

flip ;

flop

In this example, first the interpretation semantics of
flip is used (and you get a warning); the second use of
flip uses the compilation semantics (and you get no warn-
ing). You can also see in this example that compile-only
is a property that is evaluated at text interpretation time,
not at run-time.

The text interpreter has two states: in interpret state,
it performs the interpretation semantics of words it en-
counters; in compile state, it performs the compilation se-
mantics of these words.

Among other things, : switches into compile state, and
; switches back to interpret state. They contain the fac-
tors] (switch to compile state) and [(switch to interpret
state), that do nothing but switch the state.

: xxx (--)

[5 .]

;

Chapter 3: Forth Tutorial 54

xxx

see xxx

These brackets are also the source of the naming con-
vention mentioned above.

Reference: Section 5.10 [Interpretation and Compila-
tion Semantics], page 177.

3.29 Execution Tokens

’ word gives you the execution token (XT) of a word. The
XT is a cell representing the interpretation semantics of a
word. You can execute this semantics with execute:

’ + .s

1 2 rot execute .

The XT is similar to a function pointer in C. However,
parameter passing through the stack makes it a little more
flexible:

: map-array (... addr u xt -- ...)

\ executes xt (... x -- ...) for every element of the array starting

\ at addr and containing u elements

{ xt }

cells over + swap ?do

i @ xt execute

1 cells +loop ;

create a 3 , 4 , 2 , -1 , 4 ,

a 5 ’ . map-array .s

0 a 5 ’ + map-array .

s" max-n" environment? drop .s

a 5 ’ min map-array .

You can use map-array with the XTs of words that
consume one element more than they produce. In theory

Chapter 3: Forth Tutorial 55

you can also use it with other XTs, but the stack effect
then depends on the size of the array, which is hard to
understand.

Since XTs are cell-sized, you can store them in memory
and manipulate them on the stack like other cells. You can
also compile the XT into a word with compile,:

: foo1 (n1 n2 -- n)

[’ + compile,] ;

see foo1

This is non-standard, because compile, has no com-
pilation semantics in the standard, but it works in good
Forth systems. For the broken ones, use

: [compile,] compile, ; immediate

: foo1 (n1 n2 -- n)

[’ +] [compile,] ;

see foo1

’ is a word with default compilation semantics; it parses
the next word when its interpretation semantics are exe-
cuted, not during compilation:

: foo (-- xt)

’ ;

see foo

: bar (... "word" -- ...)

’ execute ;

see bar

1 2 bar + .

You often want to parse a word during compilation and
compile its XT so it will be pushed on the stack at run-
time. [’] does this:

: xt-+ (-- xt)

Chapter 3: Forth Tutorial 56

[’] + ;

see xt-+

1 2 xt-+ execute .

Many programmers tend to see ’ and the word it parses
as one unit, and expect it to behave like [’] when com-
piled, and are confused by the actual behaviour. If you are,
just remember that the Forth system just takes ’ as one
unit and has no idea that it is a parsing word (attempts
to convenience programmers in this issue have usually re-
sulted in even worse pitfalls, see State-smartness—Why
it is evil and How to Exorcise it (http://www.complang.
tuwien.ac.at/papers/ertl98.ps.gz)).

Note that the state of the interpreter does not come into
play when creating and executing XTs. I.e., even when
you execute ’ in compile state, it still gives you the inter-
pretation semantics. And whatever that state is, execute
performs the semantics represented by the XT (i.e., for
XTs produced with ’ the interpretation semantics).

Reference: Section 5.11 [Tokens for Words], page 181.

3.30 Exceptions

throw (n --) causes an exception unless n is zero.

100 throw .s

0 throw .s

catch (... xt -- ... n) behaves similar to
execute, but it catches exceptions and pushes the
number of the exception on the stack (or 0, if the xt
executed without exception). If there was an exception,
the stacks have the same depth as when entering catch:

.s

3 0 ’ / catch .s

http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz

Chapter 3: Forth Tutorial 57

3 2 ’ / catch .s

Assignment: Try the same with execute instead of
catch.

Throw always jumps to the dynamically next enclosing
catch, even if it has to leave several call levels to achieve
this:

: foo 100 throw ;

: foo1 foo ." after foo" ;

: bar [’] foo1 catch ;

bar .

It is often important to restore a value upon leaving a
definition, even if the definition is left through an excep-
tion. You can ensure this like this:

: ...

save-x

[’] word-changing-x catch (... n)

restore-x

(... n) throw ;

However, this is still not safe against, e.g., the user
pressing Ctrl-C when execution is between the catch and
restore-x.

Gforth provides an alternative exception handling syn-
tax that is safe against such cases: try ... restore ...

endtry. If the code between try and endtry has an excep-
tion, the stack depths are restored, the exception number
is pushed on the stack, and the execution continues right
after restore.

The safer equivalent to the restoration code above is

: ...

save-x

try

Chapter 3: Forth Tutorial 58

word-changing-x 0

restore

restore-x

endtry

throw ;

Reference: Section 5.8.8 [Exception Handling],
page 146.

3.31 Defining Words

:, create, and variable are definition words: They define
other words. Constant is another definition word:

5 constant foo

foo .

You can also use the prefixes 2 (double-cell) and f

(floating point) with variable and constant.

You can also define your own defining words. E.g.:

: variable ("name" --)

create 0 , ;

You can also define defining words that create words
that do something other than just producing their address:

: constant (n "name" --)

create ,

does> (-- n)

(addr) @ ;

5 constant foo

foo .

The definition of constant above ends at the does>;
i.e., does> replaces ;, but it also does something else: It

Chapter 3: Forth Tutorial 59

changes the last defined word such that it pushes the ad-
dress of the body of the word and then performs the code
after the does> whenever it is called.

In the example above, constant uses , to store 5 into
the body of foo. When foo executes, it pushes the address
of the body onto the stack, then (in the code after the
does>) fetches the 5 from there.

The stack comment near the does> reflects the stack
effect of the defined word, not the stack effect of the code
after the does> (the difference is that the code expects
the address of the body that the stack comment does not
show).

You can use these definition words to do factoring in
cases that involve (other) definition words. E.g., a field
offset is always added to an address. Instead of defining

2 cells constant offset-field1

and using this like

(addr) offset-field1 +

you can define a definition word

: simple-field (n "name" --)

create ,

does> (n1 -- n1+n)

(addr) @ + ;

Definition and use of field offsets now look like this:

2 cells simple-field field1

create mystruct 4 cells allot

mystruct .s field1 .s drop

If you want to do something with the word without
performing the code after the does>, you can access the
body of a created word with >body (xt -- addr):

Chapter 3: Forth Tutorial 60

: value (n "name" --)

create ,

does> (-- n1)

@ ;

: to (n "name" --)

’ >body ! ;

5 value foo

foo .

7 to foo

foo .

Assignment: Define defer ("name" --), which creates a
word that stores an XT (at the start the XT of abort), and
upon execution executes the XT. Define is (xt "name"

--) that stores xt into name, a word defined with defer.
Indirect recursion is one application of defer.

Reference: Section 5.9.9 [User-defined Defining Words],
page 161.

3.32 Arrays and Records

Forth has no standard words for defining arrays, but you
can build them yourself based on address arithmetic. You
can also define words for defining arrays and records (see
Section 3.31 [Defining Words], page 58).

One of the first projects a Forth newcomer sets out
upon when learning about defining words is an array defin-
ing word (possibly for n-dimensional arrays). Go ahead
and do it, I did it, too; you will learn something from
it. However, don’t be disappointed when you later learn
that you have little use for these words (inappropriate use
would be even worse). I have not found a set of useful ar-

Chapter 3: Forth Tutorial 61

ray words yet; the needs are just too diverse, and named,
global arrays (the result of naive use of defining words) are
often not flexible enough (e.g., consider how to pass them
as parameters). Another such project is a set of words to
help dealing with strings.

On the other hand, there is a useful set of record words,
and it has been defined in compat/struct.fs; these words
are predefined in Gforth. They are explained in depth
elsewhere in this manual (see see Section 5.22 [Structures],
page 284). The simple-field example above is simplified
variant of fields in this package.

3.33 POSTPONE

You can compile the compilation semantics (instead of
compiling the interpretation semantics) of a word with
POSTPONE:

: MY-+ (Compilation: -- ; Run-time of compiled code: n1 n2 -- n)

POSTPONE + ; immediate

: foo (n1 n2 -- n)

MY-+ ;

1 2 foo .

see foo

During the definition of foo the text interpreter per-
forms the compilation semantics of MY-+, which performs
the compilation semantics of +, i.e., it compiles + into foo.

This example also displays separate stack comments
for the compilation semantics and for the stack effect of
the compiled code. For words with default compilation
semantics these stack effects are usually not displayed; the
stack effect of the compilation semantics is always (--)

Chapter 3: Forth Tutorial 62

for these words, the stack effect for the compiled code is
the stack effect of the interpretation semantics.

Note that the state of the interpreter does not come
into play when performing the compilation semantics in
this way. You can also perform it interpretively, e.g.:

: foo2 (n1 n2 -- n)

[MY-+] ;

1 2 foo .

see foo

However, there are some broken Forth systems where
this does not always work, and therefore this practice was
been declared non-standard in 1999.

Here is another example for using POSTPONE:

: MY-- (Compilation: -- ; Run-time of compiled code: n1 n2 -- n)

POSTPONE negate POSTPONE + ; immediate compile-only

: bar (n1 n2 -- n)

MY-- ;

2 1 bar .

see bar

You can define ENDIF in this way:

: ENDIF (Compilation: orig --)

POSTPONE then ; immediate

Assignment: Write MY-2DUP that has compilation seman-
tics equivalent to 2dup, but compiles over over.

3.34 Literal

You cannot POSTPONE numbers:

: [FOO] POSTPONE 500 ; immediate

Instead, you can use LITERAL (compilation: n --;

run-time: -- n):

Chapter 3: Forth Tutorial 63

: [FOO] (compilation: --; run-time: -- n)

500 POSTPONE literal ; immediate

: flip [FOO] ;

flip .

see flip

LITERAL consumes a number at compile-time (when it’s
compilation semantics are executed) and pushes it at run-
time (when the code it compiled is executed). A frequent
use of LITERAL is to compile a number computed at com-
pile time into the current word:

: bar (-- n)

[2 2 +] literal ;

see bar

Assignment: Write]L which allows writing the example
above as : bar (-- n) [2 2 +]L ;

3.35 Advanced macros

Reconsider map-array from Section 3.29 [Execution To-
kens], page 54. It frequently performs execute, a rela-
tively expensive operation in some Forth implementations.
You can use compile, and POSTPONE to eliminate these
executes and produce a word that contains the word to
be performed directly:

: compile-map-array (compilation: xt -- ; run-time: ... addr u -- ...)

\ at run-time, execute xt (... x -- ...) for each element of the

\ array beginning at addr and containing u elements

{ xt }

POSTPONE cells POSTPONE over POSTPONE + POSTPONE swap POSTPONE ?do

POSTPONE i POSTPONE @ xt compile,

1 cells POSTPONE literal POSTPONE +loop ;

Chapter 3: Forth Tutorial 64

: sum-array (addr u -- n)

0 rot rot [’ + compile-map-array] ;

see sum-array

a 5 sum-array .

You can use the full power of Forth for generating the
code; here’s an example where the code is generated in a
loop:

: compile-vmul-step (compilation: n --; run-time: n1 addr1 -- n2 addr2)

\ n2=n1+(addr1)*n, addr2=addr1+cell

POSTPONE tuck POSTPONE @

POSTPONE literal POSTPONE * POSTPONE +

POSTPONE swap POSTPONE cell+ ;

: compile-vmul (compilation: addr1 u -- ; run-time: addr2 -- n)

\ n=v1*v2 (inner product), where the v_i are represented as addr_i u

0 postpone literal postpone swap

[’ compile-vmul-step compile-map-array]

postpone drop ;

see compile-vmul

: a-vmul (addr -- n)

\ n=a*v, where v is a vector that’s as long as a and starts at addr

[a 5 compile-vmul] ;

see a-vmul

a a-vmul .

This example uses compile-map-array to show off, but
you could also use map-array instead (try it now!).

You can use this technique for efficient multiplication
of large matrices. In matrix multiplication, you multiply
every row of one matrix with every column of the other ma-
trix. You can generate the code for one row once, and use

Chapter 3: Forth Tutorial 65

it for every column. The only downside of this technique
is that it is cumbersome to recover the memory consumed
by the generated code when you are done (and in more
complicated cases it is not possible portably).

3.36 Compilation Tokens

This section is Gforth-specific. You can skip it.

’ word compile, compiles the interpretation seman-
tics. For words with default compilation semantics this
is the same as performing the compilation semantics.
To represent the compilation semantics of other words
(e.g., words like if that have no interpretation semantics),
Gforth has the concept of a compilation token (CT, con-
sisting of two cells), and words comp’ and [comp’]. You
can perform the compilation semantics represented by a
CT with execute:

: foo2 (n1 n2 -- n)

[comp’ + execute] ;

see foo

You can compile the compilation semantics represented
by a CT with postpone,:

: foo3 (--)

[comp’ + postpone,] ;

see foo3

[comp’ word postpone,] is equivalent to POSTPONE

word. comp’ is particularly useful for words that have no
interpretation semantics:

’ if

comp’ if .s 2drop

Reference: Section 5.11 [Tokens for Words], page 181.

Chapter 3: Forth Tutorial 66

3.37 Wordlists and Search Order

The dictionary is not just a memory area that allows you
to allocate memory with allot, it also contains the Forth
words, arranged in several wordlists. When searching for
a word in a wordlist, conceptually you start searching at
the youngest and proceed towards older words (in reality
most systems nowadays use hash-tables); i.e., if you define
a word with the same name as an older word, the new
word shadows the older word.

Which wordlists are searched in which order is deter-
mined by the search order. You can display the search
order with order. It displays first the search order, start-
ing with the wordlist searched first, then it displays the
wordlist that will contain newly defined words.

You can create a new, empty wordlist with wordlist

(-- wid):

wordlist constant mywords

Set-current (wid --) sets the wordlist that will con-
tain newly defined words (the current wordlist):

mywords set-current

order

Gforth does not display a name for the wordlist in
mywords because this wordlist was created anonymously
with wordlist.

You can get the current wordlist with get-current (

-- wid). If you want to put something into a specific
wordlist without overall effect on the current wordlist, this
typically looks like this:

get-current mywords set-current (wid)

create someword

Chapter 3: Forth Tutorial 67

(wid) set-current

You can write the search order with set-order (wid1

.. widn n --) and read it with get-order (-- wid1 ..

widn n). The first searched wordlist is topmost.

get-order mywords swap 1+ set-order

order

Yes, the order of wordlists in the output of order is
reversed from stack comments and the output of .s and
thus unintuitive.

Assignment: Define >order (wid --) which adds wid

as first searched wordlist to the search order. Define
previous (--), which removes the first searched
wordlist from the search order. Experiment with bound-
ary conditions (you will see some crashes or situations
that are hard or impossible to leave).

The search order is a powerful foundation for provid-
ing features similar to Modula-2 modules and C++ names-
paces. However, trying to modularize programs in this
way has disadvantages for debugging and reuse/factoring
that overcome the advantages in my experience (I don’t
do huge projects, though). These disadvantages are not so
clear in other languages/programming environments, be-
cause these languages are not so strong in debugging and
reuse.

Reference: Section 5.15 [Word Lists], page 210.

68

4 An Introduction to Standard
Forth

The difference of this chapter from the Tutorial (see
Chapter 3 [Tutorial], page 18) is that it is slower-paced in
its examples, but uses them to dive deep into explaining
Forth internals (not covered by the Tutorial). Apart from
that, this chapter covers far less material. It is suitable for
reading without using a computer.

The primary purpose of this manual is to document
Gforth. However, since Forth is not a widely-known lan-
guage and there is a lack of up-to-date teaching material,
it seems worthwhile to provide some introductory mate-
rial. For other sources of Forth-related information, see
Appendix C [Forth-related information], page 468.

The examples in this section should work on any Stan-
dard Forth; the output shown was produced using Gforth.
Each example attempts to reproduce the exact output that
Gforth produces. If you try out the examples (and you
should), what you should type is shown like this and
Gforth’s response is shown like this. The single excep-
tion is that, where the example shows RET it means that
you should press the “carriage return” key. Unfortunately,
some output formats for this manual cannot show the dif-
ference between this and this which will make trying out
the examples harder (but not impossible).

Forth is an unusual language. It provides an interactive
development environment which includes both an inter-
preter and compiler. Forth programming style encourages
you to break a problem down into many small fragments
(factoring), and then to develop and test each fragment

Chapter 4: An Introduction to Standard Forth 69

interactively. Forth advocates assert that breaking the
edit-compile-test cycle used by conventional programming
languages can lead to great productivity improvements.

4.1 Introducing the Text Interpreter

When you invoke the Forth image, you will see a startup
banner printed and nothing else (if you have Gforth in-
stalled on your system, try invoking it now, by typing
gforthRET). Forth is now running its command line in-
terpreter, which is called the Text Interpreter (also known
as the Outer Interpreter). (You will learn a lot about the
text interpreter as you read through this chapter, for more
detail see Section 5.13 [The Text Interpreter], page 194).

Although it’s not obvious, Forth is actually waiting for
your input. Type a number and press the RET key:

45RET ok

Rather than give you a prompt to invite you to input
something, the text interpreter prints a status message
after it has processed a line of input. The status message
in this case (“ ok” followed by carriage-return) indicates
that the text interpreter was able to process all of your
input successfully. Now type something illegal:

qwer341RET

the terminal:2: Undefined word

>>>qwer341<<<

Backtrace:

$2A95B42A20 throw

$2A95B57FB8 no.extensions

The exact text, other than the “Undefined word” may
differ slightly on your system, but the effect is the same;
when the text interpreter detects an error, it discards any

Chapter 4: An Introduction to Standard Forth 70

remaining text on a line, resets certain internal state and
prints an error message. For a detailed description of error
messages see Chapter 6 [Error messages], page 387.

The text interpreter waits for you to press carriage-
return, and then processes your input line. Starting at the
beginning of the line, it breaks the line into groups of char-
acters separated by spaces. For each group of characters
in turn, it makes two attempts to do something:

• It tries to treat it as a command. It does this by
searching a name dictionary. If the group of charac-
ters matches an entry in the name dictionary, the name
dictionary provides the text interpreter with informa-
tion that allows the text interpreter to perform some
actions. In Forth jargon, we say that the group of char-
acters names a word, that the dictionary search returns
an execution token (xt) corresponding to the definition
of the word, and that the text interpreter executes the
xt. Often, the terms word and definition are used in-
terchangeably.

• If the text interpreter fails to find a match in the name
dictionary, it tries to treat the group of characters as a
number in the current number base (when you start up
Forth, the current number base is base 10). If the group
of characters legitimately represents a number, the text
interpreter pushes the number onto a stack (we’ll learn
more about that in the next section).

If the text interpreter is unable to do either of these
things with any group of characters, it discards the group
of characters and the rest of the line, then prints an error
message. If the text interpreter reaches the end of the line

Chapter 4: An Introduction to Standard Forth 71

without error, it prints the status message “ ok” followed
by carriage-return.

This is the simplest command we can give to the text
interpreter:

RET ok

The text interpreter did everything we asked it to do
(nothing) without an error, so it said that everything is “
ok”. Try a slightly longer command:

12 dup fred dupRET

the terminal:3: Undefined word

12 dup >>>fred<<< dup

Backtrace:

$2A95B42A20 throw

$2A95B57FB8 no.extensions

When you press the carriage-return key, the text inter-
preter starts to work its way along the line:

• When it gets to the space after the 2, it takes the group
of characters 12 and looks them up in the name dictio-
nary1. There is no match for this group of characters
in the name dictionary, so it tries to treat them as a
number. It is able to do this successfully, so it puts the
number, 12, “on the stack” (whatever that means).

• The text interpreter resumes scanning the line and gets
the next group of characters, dup. It looks it up in the
name dictionary and (you’ll have to take my word for
this) finds it, and executes the word dup (whatever that
means).

• Once again, the text interpreter resumes scanning the
line and gets the group of characters fred. It looks

1 We can’t tell if it found them or not, but assume for now that it
did not

Chapter 4: An Introduction to Standard Forth 72

them up in the name dictionary, but can’t find them.
It tries to treat them as a number, but they don’t rep-
resent any legal number.

At this point, the text interpreter gives up and prints
an error message. The error message shows exactly how
far the text interpreter got in processing the line. In par-
ticular, it shows that the text interpreter made no attempt
to do anything with the final character group, dup, even
though we have good reason to believe that the text inter-
preter would have no problem looking that word up and
executing it a second time.

4.2 Stacks, postfix notation and
parameter passing

In procedural programming languages (like C and Pascal),
the building-block of programs is the function or proce-
dure. These functions or procedures are called with ex-
plicit parameters. For example, in C we might write:

total = total + new_volume(length,height,depth);

where new volume is a function-call to another piece of
code, and total, length, height and depth are all variables.
length, height and depth are parameters to the function-
call.

In Forth, the equivalent of the function or procedure
is the definition and parameters are implicitly passed be-
tween definitions using a shared stack that is visible to the
programmer. Although Forth does support variables, the
existence of the stack means that they are used far less of-
ten than in most other programming languages. When the
text interpreter encounters a number, it will place (push) it
on the stack. There are several stacks (the actual number

Chapter 4: An Introduction to Standard Forth 73

is implementation-dependent ...) and the particular stack
used for any operation is implied unambiguously by the
operation being performed. The stack used for all integer
operations is called the data stack and, since this is the
stack used most commonly, references to “the data stack”
are often abbreviated to “the stack”.

The stacks have a last-in, first-out (LIFO) organisation.
If you type:

1 2 3RET ok

Then this instructs the text interpreter to placed three
numbers on the (data) stack. An analogy for the behaviour
of the stack is to take a pack of playing cards and deal out
the ace (1), 2 and 3 into a pile on the table. The 3 was
the last card onto the pile (“last-in”) and if you take a
card off the pile then, unless you’re prepared to fiddle a
bit, the card that you take off will be the 3 (“first-out”).
The number that will be first-out of the stack is called the
top of stack, which is often abbreviated to TOS.

To understand how parameters are passed in Forth,
consider the behaviour of the definition + (pronounced
“plus”). You will not be surprised to learn that this defini-
tion performs addition. More precisely, it adds two num-
bers together and produces a result. Where does it get the
two numbers from? It takes the top two numbers off the
stack. Where does it place the result? On the stack. You
can act out the behaviour of + with your playing cards like
this:

• Pick up two cards from the stack on the table

• Stare at them intently and ask yourself “what is the
sum of these two numbers”

• Decide that the answer is 5

Chapter 4: An Introduction to Standard Forth 74

• Shuffle the two cards back into the pack and find a 5

• Put a 5 on the remaining ace that’s on the table.

If you don’t have a pack of cards handy but you do
have Forth running, you can use the definition .s to show
the current state of the stack, without affecting the stack.
Type:

clearstacks 1 2 3RET ok

.sRET <3> 1 2 3 ok

The text interpreter looks up the word clearstacks

and executes it; it tidies up the stacks (data and float-
ing point stack) and removes any entries that may have
been left on them by earlier examples. The text inter-
preter pushes each of the three numbers in turn onto the
stack. Finally, the text interpreter looks up the word .s

and executes it. The effect of executing .s is to print the
“<3>” (the total number of items on the stack) followed
by a list of all the items on the stack; the item on the far
right-hand side is the TOS.

You can now type:

+ .sRET <2> 1 5 ok

which is correct; there are now 2 items on the stack and
the result of the addition is 5.

If you’re playing with cards, try doing a second addi-
tion: pick up the two cards, work out that their sum is
6, shuffle them into the pack, look for a 6 and place that
on the table. You now have just one item on the stack.
What happens if you try to do a third addition? Pick up
the first card, pick up the second card – ah! There is no
second card. This is called a stack underflow and consi-
tutes an error. If you try to do the same thing with Forth

Chapter 4: An Introduction to Standard Forth 75

it often reports an error (probably a Stack Underflow or
an Invalid Memory Address error).

The opposite situation to a stack underflow is a stack
overflow, which simply accepts that there is a finite amount
of storage space reserved for the stack. To stretch the play-
ing card analogy, if you had enough packs of cards and you
piled the cards up on the table, you would eventually be
unable to add another card; you’d hit the ceiling. Gforth
allows you to set the maximum size of the stacks. In gen-
eral, the only time that you will get a stack overflow is
because a definition has a bug in it and is generating data
on the stack uncontrollably.

There’s one final use for the playing card analogy. If
you model your stack using a pack of playing cards, the
maximum number of items on your stack will be 52 (I as-
sume you didn’t use the Joker). The maximum value of
any item on the stack is 13 (the King). In fact, the only
possible numbers are positive integer numbers 1 through
13; you can’t have (for example) 0 or 27 or 3.52 or -2. If
you change the way you think about some of the cards,
you can accommodate different numbers. For example,
you could think of the Jack as representing 0, the Queen
as representing -1 and the King as representing -2. Your
range remains unchanged (you can still only represent a
total of 13 numbers) but the numbers that you can repre-
sent are -2 through 10.

In that analogy, the limit was the amount of informa-
tion that a single stack entry could hold, and Forth has a
similar limit. In Forth, the size of a stack entry is called a
cell. The actual size of a cell is implementation dependent
and affects the maximum value that a stack entry can hold.

Chapter 4: An Introduction to Standard Forth 76

A Standard Forth provides a cell size of at least 16-bits,
and most desktop systems use a cell size of 32-bits.

Forth does not do any type checking for you, so you are
free to manipulate and combine stack items in any way you
wish. A convenient way of treating stack items is as 2’s
complement signed integers, and that is what Standard
words like + do. Therefore you can type:

-5 12 + .sRET <1> 7 ok

If you use numbers and definitions like + in order to
turn Forth into a great big pocket calculator, you will re-
alise that it’s rather different from a normal calculator.
Rather than typing 2 + 3 = you had to type 2 3 + (ig-
nore the fact that you had to use .s to see the result).
The terminology used to describe this difference is to say
that your calculator uses Infix Notation (parameters and
operators are mixed) whilst Forth uses Postfix Notation
(parameters and operators are separate), also called Re-
verse Polish Notation.

Whilst postfix notation might look confusing to begin
with, it has several important advantages:

• it is unambiguous

• it is more concise

• it fits naturally with a stack-based system

To examine these claims in more detail, consider these
sums:

6 + 5 * 4 =

4 * 5 + 6 =

If you’re just learning maths or your maths is very
rusty, you will probably come up with the answer 44 for
the first and 26 for the second. If you are a bit of a whizz

Chapter 4: An Introduction to Standard Forth 77

at maths you will remember the convention that multipli-
cation takes precendence over addition, and you’d come up
with the answer 26 both times. To explain the answer 26
to someone who got the answer 44, you’d probably rewrite
the first sum like this:

6 + (5 * 4) =

If what you really wanted was to perform the addition
before the multiplication, you would have to use parenthe-
ses to force it.

If you did the first two sums on a pocket calculator
you would probably get the right answers, unless you were
very cautious and entered them using these keystroke se-
quences:

6 + 5 = * 4 = 4 * 5 = + 6 =

Postfix notation is unambiguous because the order that
the operators are applied is always explicit; that also
means that parentheses are never required. The opera-
tors are active (the act of quoting the operator makes the
operation occur) which removes the need for “=”.

The sum 6 + 5 * 4 can be written (in postfix notation)
in two equivalent ways:

6 5 4 * + or:

5 4 * 6 +

An important thing that you should notice about this
notation is that the order of the numbers does not change;
if you want to subtract 2 from 10 you type 10 2 -.

The reason that Forth uses postfix notation is very sim-
ple to explain: it makes the implementation extremely
simple, and it follows naturally from using the stack as a
mechanism for passing parameters. Another way of think-
ing about this is to realise that all Forth definitions are

Chapter 4: An Introduction to Standard Forth 78

active; they execute as they are encountered by the text
interpreter. The result of this is that the syntax of Forth
is trivially simple.

4.3 Your first Forth definition

Until now, the examples we’ve seen have been trivial; we’ve
just been using Forth as a bigger-than-pocket calculator.
Also, each calculation we’ve shown has been a “one-off” –
to repeat it we’d need to type it in again2 In this section
we’ll see how to add new words to Forth’s vocabulary.

The easiest way to create a new word is to use a colon
definition. We’ll define a few and try them out before
worrying too much about how they work. Try typing in
these examples; be careful to copy the spaces accurately:

: add-two 2 + . ;

: greet ." Hello and welcome" ;

: demo 5 add-two ;

Now try them out:

greetRET Hello and welcome ok

greet greetRET Hello and welcomeHello and welcome ok

4 add-twoRET 6 ok

demoRET 7 ok

9 greet demo add-twoRET Hello and welcome7 11 ok

The first new thing that we’ve introduced here is the
pair of words : and ;. These are used to start and ter-
minate a new definition, respectively. The first word after
the : is the name for the new definition.

2 That’s not quite true. If you press the up-arrow key on your key-
board you should be able to scroll back to any earlier command,
edit it and re-enter it.

Chapter 4: An Introduction to Standard Forth 79

As you can see from the examples, a definition is built
up of words that have already been defined; Forth makes
no distinction between definitions that existed when you
started the system up, and those that you define yourself.

The examples also introduce the words . (dot), ." (dot-
quote) and dup (dewp). Dot takes the value from the top
of the stack and displays it. It’s like .s except that it only
displays the top item of the stack and it is destructive;
after it has executed, the number is no longer on the stack.
There is always one space printed after the number, and no
spaces before it. Dot-quote defines a string (a sequence of
characters) that will be printed when the word is executed.
The string can contain any printable characters except ".
A " has a special function; it is not a Forth word but it acts
as a delimiter (the way that delimiters work is described
in the next section). Finally, dup duplicates the value at
the top of the stack. Try typing 5 dup .s to see what it
does.

We already know that the text interpreter searches
through the dictionary to locate names. If you’ve followed
the examples earlier, you will already have a definition
called add-two. Lets try modifying it by typing in a new
definition:

: add-two dup . ." + 2 = " 2 + . ;RET redefined add-

two ok

Forth recognised that we were defining a word that al-
ready exists, and printed a message to warn us of that fact.
Let’s try out the new definition:

9 add-twoRET 9 + 2 = 11 ok

All that we’ve actually done here, though, is to create
a new definition, with a particular name. The fact that

Chapter 4: An Introduction to Standard Forth 80

there was already a definition with the same name did not
make any difference to the way that the new definition was
created (except that Forth printed a warning message).
The old definition of add-two still exists (try demo again
to see that this is true). Any new definition will use the
new definition of add-two, but old definitions continue to
use the version that already existed at the time that they
were compiled.

Before you go on to the next section, try defining and
redefining some words of your own.

4.4 How does that work?

Now we’re going to take another look at the definition of
add-two from the previous section. From our knowledge
of the way that the text interpreter works, we would have
expected this result when we tried to define add-two:

: add-two 2 + . ;RET

the terminal:4: Undefined word

: >>>add-two<<< 2 + . ;

The reason that this didn’t happen is bound up in the
way that : works. The word : does two special things.
The first special thing that it does is to prevent the text
interpreter from ever seeing the characters add-two. The
text interpreter uses a variable called >IN (pronounced “to-
in”) to keep track of where it is in the input line. When it
encounters the word : it behaves in exactly the same way
as it does for any other word; it looks it up in the name
dictionary, finds its xt and executes it. When : executes,
it looks at the input buffer, finds the word add-two and
advances the value of >IN to point past it. It then does
some other stuff associated with creating the new defini-

Chapter 4: An Introduction to Standard Forth 81

tion (including creating an entry for add-two in the name
dictionary). When the execution of : completes, control
returns to the text interpreter, which is oblivious to the
fact that it has been tricked into ignoring part of the in-
put line.

Words like : – words that advance the value of >IN and
so prevent the text interpreter from acting on the whole
of the input line – are called parsing words.

The second special thing that : does is change the value
of a variable called state, which affects the way that the
text interpreter behaves. When Gforth starts up, state
has the value 0, and the text interpreter is said to be inter-
preting. During a colon definition (started with :), state
is set to -1 and the text interpreter is said to be compiling.

In this example, the text interpreter is compiling when
it processes the string “2 + . ;”. It still breaks the string
down into character sequences in the same way. However,
instead of pushing the number 2 onto the stack, it lays
down (compiles) some magic into the definition of add-two
that will make the number 2 get pushed onto the stack
when add-two is executed. Similarly, the behaviours of +
and . are also compiled into the definition.

Certain kinds of words do not get compiled. These
so-called immediate words get executed (performed now)
regardless of whether the text interpreter is interpreting
or compiling. The word ; is an immediate word. Rather
than being compiled into the definition, it executes. Its
effect is to terminate the current definition, which includes
changing the value of state back to 0.

Chapter 4: An Introduction to Standard Forth 82

When you execute add-two, it has a run-time effect
that is exactly the same as if you had typed 2 + . RET

outside of a definition.

In Forth, every word or number can be described in
terms of two properties:

• Its interpretation semantics describe how it will be-
have when the text interpreter encounters it in inter-
pret state. The interpretation semantics of a word are
represented by an execution token.

• Its compilation semantics describe how it will behave
when the text interpreter encounters it in compile state.
The compilation semantics of a word are represented in
an implementation-dependent way; Gforth uses a com-
pilation token.

Numbers are always treated in a fixed way:

• When the number is interpreted, its behaviour is to
push the number onto the stack.

• When the number is compiled, a piece of code is ap-
pended to the current definition that pushes the num-
ber when it runs. (In other words, the compilation se-
mantics of a number are to postpone its interpretation
semantics until the run-time of the definition that it is
being compiled into.)

Words don’t always behave in such a regular way, but
most have default semantics which means that they behave
like this:

• The interpretation semantics of the word are to do
something useful.

• The compilation semantics of the word are to append
its interpretation semantics to the current definition (so
that its run-time behaviour is to do something useful).

Chapter 4: An Introduction to Standard Forth 83

The actual behaviour of any particular word can
be controlled by using the words immediate and
compile-only when the word is defined. These words set
flags in the name dictionary entry of the most recently
defined word, and these flags are retrieved by the text
interpreter when it finds the word in the name dictionary.

A word that is marked as immediate has compilation
semantics that are identical to its interpretation semantics.
In other words, it behaves like this:

• The interpretation semantics of the word are to do
something useful.

• The compilation semantics of the word are to do some-
thing useful (and actually the same thing); i.e., it is
executed during compilation.

Marking a word as compile-only means that the text in-
terpreter produces a warning when encountering this word
in interpretation state; ticking the word (with ’ or [’] also
produces a warning.

It is never necessary to use compile-only (and it is
not even part of Standard Forth, though it is provided by
many implementations) but it is good etiquette to apply it
to a word that will not behave correctly (and might have
unexpected side-effects) in interpret state. For example,
it is only legal to use the conditional word IF within a
definition. If you forget this and try to use it elsewhere,
the fact that (in Gforth) it is marked as compile-only

allows the text interpreter to generate a helpful warning.

This example shows the difference between an immedi-
ate and a non-immediate word:

: show-state state @ . ;

: show-state-now show-state ; immediate

Chapter 4: An Introduction to Standard Forth 84

: word1 show-state ;

: word2 show-state-now ;

The word immediate after the definition of
show-state-now makes that word an immediate
word. These definitions introduce a new word: @

(pronounced “fetch”). This word fetches the value of
a variable, and leaves it on the stack. Therefore, the
behaviour of show-state is to print a number that
represents the current value of state.

When you execute word1, it prints the number 0, in-
dicating that the system is interpreting. When the text
interpreter compiled the definition of word1, it encoun-
tered show-state whose compilation semantics are to ap-
pend its interpretation semantics to the current definition.
When you execute word1, it performs the interpretation
semantics of show-state. At the time that word1 (and
therefore show-state) is executed, the system is inter-
preting.

When you pressed RET after entering the definition of
word2, you should have seen the number -1 printed, fol-
lowed by “ ok”. When the text interpreter compiled the
definition of word2, it encountered show-state-now, an
immediate word, whose compilation semantics are there-
fore to perform its interpretation semantics. It is executed
straight away (even before the text interpreter has moved
on to process another group of characters; the ; in this
example). The effect of executing it is to display the value
of state at the time that the definition of word2 is being
defined. Printing -1 demonstrates that the system is com-
piling at this time. If you execute word2 it does nothing
at all.

Chapter 4: An Introduction to Standard Forth 85

Before leaving the subject of immediate words, con-
sider the behaviour of ." in the definition of greet, in the
previous section. This word is both a parsing word and
an immediate word. Notice that there is a space between
." and the start of the text Hello and welcome, but that
there is no space between the last letter of welcome and
the " character. The reason for this is that ." is a Forth
word; it must have a space after it so that the text in-
terpreter can identify it. The " is not a Forth word; it
is a delimiter. The examples earlier show that, when the
string is displayed, there is neither a space before the H nor
after the e. Since ." is an immediate word, it executes at
the time that greet is defined. When it executes, its be-
haviour is to search forward in the input line looking for
the delimiter. When it finds the delimiter, it updates >IN
to point past the delimiter. It also compiles some magic
code into the definition of greet; the xt of a run-time
routine that prints a text string. It compiles the string
Hello and welcome into memory so that it is available to
be printed later. When the text interpreter gains control,
the next word it finds in the input stream is ; and so it
terminates the definition of greet.

4.5 Forth is written in Forth

When you start up a Forth compiler, a large number of
definitions already exist. In Forth, you develop a new
application using bottom-up programming techniques to
create new definitions that are defined in terms of existing
definitions. As you create each definition you can test and
debug it interactively.

If you have tried out the examples in this section, you
will probably have typed them in by hand; when you leave

Chapter 4: An Introduction to Standard Forth 86

Gforth, your definitions will be lost. You can avoid this
by using a text editor to enter Forth source code into a
file, and then loading code from the file using include

(see Section 5.17.1 [Forth source files], page 221). A Forth
source file is processed by the text interpreter, just as
though you had typed it in by hand3.

Gforth also supports the traditional Forth alternative
to using text files for program entry (see Section 5.18
[Blocks], page 230).

In common with many, if not most, Forth compilers,
most of Gforth is actually written in Forth. All of the .fs
files in the installation directory4 are Forth source files,
which you can study to see examples of Forth program-
ming.

Gforth maintains a history file that records every line
that you type to the text interpreter. This file is preserved
between sessions, and is used to provide a command-line
recall facility. If you enter long definitions by hand, you
can use a text editor to paste them out of the history
file into a Forth source file for reuse at a later time (for
more information see Section 2.4 [Command-line editing],
page 11).

4.6 Review - elements of a Forth
system

To summarise this chapter:

• Forth programs use factoring to break a problem down
into small fragments called words or definitions.

3 Actually, there are some subtle differences – see Section 5.13 [The
Text Interpreter], page 194.

4 For example, /usr/local/share/gforth...

Chapter 4: An Introduction to Standard Forth 87

• Forth program development is an interactive process.

• The main command loop that accepts input, and con-
trols both interpretation and compilation, is called the
text interpreter (also known as the outer interpreter).

• Forth has a very simple syntax, consisting of words and
numbers separated by spaces or carriage-return char-
acters. Any additional syntax is imposed by parsing
words.

• Forth uses a stack to pass parameters between words.
As a result, it uses postfix notation.

• To use a word that has previously been defined, the
text interpreter searches for the word in the name dic-
tionary.

• Words have interpretation semantics and compilation
semantics.

• The text interpreter uses the value of state to select
between the use of the interpretation semantics and the
compilation semantics of a word that it encounters.

• The relationship between the interpretation semantics
and compilation semantics for a word depends upon
the way in which the word was defined (for example,
whether it is an immediate word).

• Forth definitions can be implemented in Forth (called
high-level definitions) or in some other way (usually a
lower-level language and as a result often called low-
level definitions, code definitions or primitives).

• Many Forth systems are implemented mainly in Forth.

Chapter 4: An Introduction to Standard Forth 88

4.7 Where To Go Next

Amazing as it may seem, if you have read (and understood)
this far, you know almost all the fundamentals about the
inner workings of a Forth system. You certainly know
enough to be able to read and understand the rest of this
manual and the Standard Forth document, to learn more
about the facilities that Forth in general and Gforth in
particular provide. Even scarier, you know almost enough
to implement your own Forth system. However, that’s not
a good idea just yet... better to try writing some programs
in Gforth.

Forth has such a rich vocabulary that it can be hard to
know where to start in learning it. This section suggests
a few sets of words that are enough to write small but
useful programs. Use the word index in this document to
learn more about each word, then try it out and try to
write small definitions using it. Start by experimenting
with these words:

• Arithmetic: + - * / /MOD */ ABS INVERT

• Comparison: MIN MAX =

• Logic: AND OR XOR NOT

• Stack manipulation: DUP DROP SWAP OVER

• Loops and decisions: IF ELSE ENDIF ?DO I LOOP

• Input/Output: . ." EMIT CR KEY

• Defining words: : ; CREATE

• Memory allocation words: ALLOT ,

• Tools: SEE WORDS .S MARKER

When you have mastered those, go on to:

• More defining words: VARIABLE CONSTANT VALUE TO

CREATE DOES>

Chapter 4: An Introduction to Standard Forth 89

• Memory access: @ !

When you have mastered these, there’s nothing for it
but to read through the whole of this manual and find out
what you’ve missed.

4.8 Exercises

TODO: provide a set of programming excercises linked
into the stuff done already and into other sections of the
manual. Provide solutions to all the exercises in a .fs file
in the distribution.

90

5 Forth Words

5.1 Notation

The Forth words are described in this section in the glos-
sary notation that has become a de-facto standard for
Forth texts:

word Stack effect wordset pronunciation

Description

word
The name of the word.

Stack effect
The stack effect is written in the notation before --

after, where before and after describe the top of stack
entries before and after the execution of the word. The
rest of the stack is not touched by the word. The top of
stack is rightmost, i.e., a stack sequence is written as it is
typed in. Note that Gforth uses a separate floating point
stack, but a unified stack notation. Also, return stack
effects are not shown in stack effect, but in Description.
The name of a stack item describes the type and/or the
function of the item. See below for a discussion of the
types.

All words have two stack effects: A compile-time stack ef-
fect and a run-time stack effect. The compile-time stack-
effect of most words is – . If the compile-time stack-
effect of a word deviates from this standard behaviour,
or the word does other unusual things at compile time,
both stack effects are shown; otherwise only the run-time
stack effect is shown.

Chapter 5: Forth Words 91

Also note that in code templates or examples there can be
comments in parentheses that display the stack picture
at this point; there is no -- in these places, because there
is no before-after situation.

pronunciation
How the word is pronounced.

wordset
The wordset specifies whether a word has been standard-
ized, it is an environmental query string, or if it is a
Gforth-specific word. In the latter case the wordset con-
tains the string gforth, other wordset names are either
environment of refer to standard word sets.

The Forth standard is divided into several word sets. In
theory, a standard system need not support all of them,
but in practice, serious systems on non-tiny machines
support almost all standardized words (some systems re-
quire explicit loading of some word sets, however), so it
does not increase portability in practice to be parsimo-
nious in using word sets.

For the Gforth-specific words, we have the following cat-
egories:

gforth

gforth-<version>

We intend to permanently support this word in Gforth
and it has been available since Gforth <version> (pos-
sibly not as supported word at that time).

gforth-experimental

This word is available in the present version and may
turn into a permanent word or may be removed in a
future release of Gforth. Feedback welcome.

Chapter 5: Forth Words 92

gforth-internal

This word is an internal factor, not a supported word,
and it may be removed in a future release of Gforth.

gforth-obsolete

This word will be removed in a future release of Gforth.

Description
A description of the behaviour of the word.

The type of a stack item is specified by the character(s)
the name starts with:

f

Boolean flags, i.e. false or true.

c

Char

w

Cell, can contain an integer or an address

n

signed integer

u

unsigned integer

d

double sized signed integer

ud

double sized unsigned integer

r

Float (on the FP stack)

a-

Cell-aligned address

Chapter 5: Forth Words 93

c-

Char-aligned address (note that a Char may have two
bytes in Windows NT)

f-

Float-aligned address

df-

Address aligned for IEEE double precision float

sf-

Address aligned for IEEE single precision float

xt

Execution token, same size as Cell

wid

Word list ID, same size as Cell

ior, wior

I/O result code, cell-sized. In Gforth, you can throw iors.

f83name

Pointer to a name structure

"

string in the input stream (not on the stack). The ter-
minating character is a blank by default. If it is not a
blank, it is shown in <> quotes.

5.2 Case insensitivity

Gforth is case-insensitive; you can enter definitions and
invoke Standard words using upper, lower or mixed case
(however, see Section 8.1.1 [Implementation-defined op-
tions], page 393).

Standard Forth only requires implementations to recog-
nise Standard words when they are typed entirely in upper

Chapter 5: Forth Words 94

case. Therefore, a Standard program must use upper case
for all Standard words. You can use whatever case you like
for words that you define, but in a Standard program you
have to use the words in the same case that you defined
them.

Gforth supports case sensitivity through cs-wordlists
(case-sensitive wordlists, see Section 5.15 [Word Lists],
page 210).

Two people have asked how to convert Gforth to be
case-sensitive; while we think this is a bad idea, you can
change all wordlists into tables like this:

’ table-find forth-wordlist wordlist-map !

Note that you now have to type the predefined words
in the same case that we defined them, which are varying.
You may want to convert them to your favourite case be-
fore doing this operation (I won’t explain how, because if
you are even contemplating doing this, you’d better have
enough knowledge of Forth systems to know this already).

5.3 Comments

Forth supports two styles of comment; the traditional in-
line comment, (and its modern cousin, the comment to
end of line; \.

(((compilation ’ccc<close-paren>’ – ; run-time –) core,file “paren”

Comment, usually till the next): parse and discard
all subsequent characters in the parse area until ")" is
encountered. During interactive input, an end-of-line also
acts as a comment terminator. For file input, it does not;
if the end-of-file is encountered whilst parsing for the ")"
delimiter, Gforth will generate a warning.

Chapter 5: Forth Words 95

\ (compilation ’ccc<newline>’ – ; run-time –) core-
ext,block-ext “backslash”

Comment till the end of the line if BLK contains 0 (i.e.,
while not loading a block), parse and discard the remain-
der of the parse area. Otherwise, parse and discard all
subsequent characters in the parse area corresponding to
the current line.

\G (compilation ’ccc<newline>’ – ; run-time –) gforth “backslash-
gee”

Equivalent to \ but used as a tag to annotate definition
comments into documentation.

5.4 Boolean Flags

A Boolean flag is cell-sized. A cell with all bits clear repre-
sents the flag false and a flag with all bits set represents
the flag true. Words that check a flag (for example, IF)
will treat a cell that has any bit set as true.

True (unknown) unknown “True”

False (unknown) unknown “False”

on (a-addr –) gforth “on”

Set the (value of the) variable at a-addr to true.

off (a-addr –) gforth “off”

Set the (value of the) variable at a-addr to false.

select (u1 u2 f – u) gforth “select”

If f is false, u is u2, otherwise u1.

5.5 Arithmetic

Forth arithmetic is not checked, i.e., you will not hear
about integer overflow on addition or multiplication, you

Chapter 5: Forth Words 96

may hear about division by zero if you are lucky. The op-
erator is written after the operands, but the operands are
still in the original order. I.e., the infix 2-1 corresponds to
2 1 -. Forth offers a variety of division operators. If you
perform division with potentially negative operands, you
do not want to use / or /mod with its implementation-
defined behaviour, but, e.g., /f, /modf or fm/mod (see
Section 5.5.4 [Integer division], page 98).

5.5.1 Single precision

By default, numbers in Forth are single-precision integers
that are one cell in size. They can be signed or unsigned,
depending upon how you treat them. For the rules used by
the text interpreter for recognising single-precision integers
see Section 5.13.2 [Number Conversion], page 199.

These words are all defined for signed operands, but
some of them also work for unsigned numbers: +, 1+, -,
1-, *.

+ (n1 n2 – n) core “plus”

1+ (n1 – n2) core “one-plus”

under+ (n1 n2 n3 – n n2) gforth “under-plus”

add n3 to n1 (giving n)

- (n1 n2 – n) core “minus”

1- (n1 – n2) core “one-minus”

* (n1 n2 – n) core “star”

negate (n1 – n2) core “negate”

abs (n – u) core “abs”

min (n1 n2 – n) core “min”

max (n1 n2 – n) core “max”

umin (u1 u2 – u) gforth “umin”

Chapter 5: Forth Words 97

umax (u1 u2 – u) gforth “umax”

5.5.2 Double precision

For the rules used by the text interpreter for recognising
double-precision integers, see Section 5.13.2 [Number Con-
version], page 199.

A double precision number is represented by a cell pair,
with the most significant cell at the TOS. It is trivial to
convert an unsigned single to a double: simply push a 0

onto the TOS. Since numbers are represented by Gforth
using 2’s complement arithmetic, converting a signed sin-
gle to a (signed) double requires sign-extension across the
most significant cell. This can be achieved using s>d. The
moral of the story is that you cannot convert a number
without knowing whether it represents an unsigned or a
signed number.

These words are all defined for signed operands, but
some of them also work for unsigned numbers: d+, d-.

s>d (n – d) core “s-to-d”

d>s (d – n) double “d-to-s”

d+ (ud1 ud2 – ud) double “d-plus”

d- (d1 d2 – d) double “d-minus”

dnegate (d1 – d2) double “d-negate”

dabs (d – ud) double “d-abs”

dmin (d1 d2 – d) double “d-min”

dmax (d1 d2 – d) double “d-max”

5.5.3 Mixed precision

m+ (d1 n – d2) double “m-plus”

m* (n1 n2 – d) core “m-star”

Chapter 5: Forth Words 98

um* (u1 u2 – ud) core “u-m-star”

5.5.4 Integer division

Below you find a considerable number of words for deal-
ing with divisions. A major difference between them is in
dealing with signed division: Do the words support signed
division (those with the U prefix do not)?

If they do, do they round towards negative infin-
ity (floored division, suffix F), or towards 0 (symmet-
ric division, suffix S). The standard leaves the issue
implementation-defined for most standard words (/ mod

/mod */ */mod m*/), and different systems have made dif-
ferent choices. Gforth implements these words as floored
(since Gforth 0.7). There is only a difference between
floored and symmetric division if the dividend and the divi-
sor have different signs, and the dividend is not a multiple
of the divisor. The following table illustrates the results:

floored symmetric

dividend divisor remainder quotient remainder quotient

10 7 3 1 3 1

-10 7 4 -2 -3 -1

10 -7 -4 -2 3 -1

-10 -7 -3 1 -3 1

The common case where floored vs. symmetric makes
a difference is when dividends n1 with varying sign are
divided by the same positive divisor n2; in that case you
usually want floored division, because then the remainder
is always positive and does not change sign depending on
the dividend; also, with floored division, the quotient al-
ways increases by 1 when n1 increases by n2, while with
symmetric division there is no increase in the quotient for
-n2<n1<n2 (the quotient is 0 in this range).

Chapter 5: Forth Words 99

In any case, if you divide numbers where floored vs.
symmetric makes a difference, you should think about
which variant is the right one for you, and then use either
the appropriately suffixed Gforth words, or the standard
words fm/mod or sm/rem.

Single-by-single-cell division:

/ (n1 n2 – n) core “slash”

n=n1/n2

/s (n1 n2 – n) gforth “slash-s”

/f (n1 n2 – n) gforth “slash-f”

u/ (u1 u2 – u) gforth “u-slash”

mod (n1 n2 – n) core “mod”

n is the modulus of n1/n2

mods (n1 n2 – n) gforth “mod-s”

modf (n1 n2 – n) gforth “modf”

umod (u1 u2 – u) gforth “umod”

/mod (n1 n2 – n3 n4) core “slash-mod”

n1=n2*n4+n3; n3 is the modulus, n4 the quotient.

/mods (n1 n2 – n3 n4) gforth “slash-mod-s”

n3 is the remainder, n4 the quotient

/modf (n1 n2 – n3 n4) gforth “slash-mod-f”

n3 is the modulus, n4 the quotient

u/mod (u1 u2 – u3 u4) gforth “u-slash-mod”

u3 is the modulus, u4 the quotient

Double-by-single-cell division with single-cell results;
these words are roughly as fast as the words above on some
architectures (e.g., AMD64), but much slower on others
(e.g., an order of magnitude on various Aarch64 CPUs).

fm/mod (d1 n1 – n2 n3) core “f-m-slash-mod”

Chapter 5: Forth Words 100

Floored division: d1 = n3*n1+n2, n1>n2>=0 or
0>=n2>n1.

sm/rem (d1 n1 – n2 n3) core “s-m-slash-rem”

Symmetric division: d1 = n3*n1+n2,
sign(n2)=sign(d1) or 0.

um/mod (ud u1 – u2 u3) core “u-m-slash-mod”

ud=u3*u1+u2, 0<=u2<u1

du/mod (d u – n u1) gforth “du-slash-mod”

d=n*u+u1, 0<=u1<u; PolyForth style mixed division

*/ ((n1 n2 n3 – n4) core “star-slash”

n4=(n1*n2)/n3, with the intermediate result being
double

*/s (n1 n2 n3 – n4) gforth “star-slash-s”

n4=(n1*n2)/n3, with the intermediate result being
double

*/f (n1 n2 n3 – n4) gforth “star-slash-f”

n4=(n1*n2)/n3, with the intermediate result being
double

u*/ (u1 u2 u3 – u4) gforth “u-star-slash”

u4=(u1*u2)/u3, with the intermediate result being
double.

*/mod (n1 n2 n3 – n4 n5) core “star-slash-mod”

n1*n2=n3*n5+n4, with the intermediate result (n1*n2)
being double; n4 is the modulus, n5 the quotient.

*/mods (n1 n2 n3 – n4 n5) gforth “star-slash-mod-s”

n1*n2=n3*n5+n4, with the intermediate result (n1*n2)
being double; n4 is the remainder, n5 the quotient

*/modf (n1 n2 n3 – n4 n5) gforth “star-slash-mod-f”

Chapter 5: Forth Words 101

n1*n2=n3*n5+n4, with the intermediate result (n1*n2)
being double; n4 is the modulus, n5 the quotient

u*/mod (u1 u2 u3 – u4 u5) gforth “u-star-slash-mod”

u1*u2=u3*u5+u4, with the intermediate result (u1*u2)
being double.

Division with double-cell results; these words are much
slower than the words above.

ud/mod (ud1 u2 – urem udquot) gforth “ud/mod”

divide unsigned double ud1 by u2, resulting in a un-
signed double quotient udquot and a single remainder
urem.

m*/ (d1 n2 u3 – dquot) double “m-star-slash”

dquot=(d1*n2)/u3, with the intermediate result being
triple-precision. In ANS Forth u3 can only be a positive
signed number.

You can use the following environmental query to learn
whether / mod /mod */ */mod m*/ use floored or symmet-
ric division.

FLOORED (– f) environment “FLOORED”

True if / etc. perform floored division

One other aspect of the integer division words is that
most of them can overflow, and division by zero is mathe-
matically undefined. What happens if you hit one of these
conditions depends on the engine, the hardware, and the
operating system: The engine gforth tries hard to throw
the appropriate error -10 (Division by zero) or -11 (Result
out of range), but on some platforms throws -55 (Floating-
point unidentified fault). The engine gforth-fast may
produce an inappropriate throw code (and error message),
or may produce no error, just produce a bogus value. I.e.,

Chapter 5: Forth Words 102

you should not bet on such conditions being thrown, but
for quicker debugging gforth catches more and produces
more accurate errors than gforth-fast.

5.5.5 Two-stage integer division

On most hardware, multiplication is significantly faster
than division. So if you have to divide many numbers
by the same divisor, it is usually faster to determine the
reciprocal of the divisor once and multiply the numbers
with the reciprocal. For integers, this is tricky, so Gforth
packages this work into the words described in this section.

Let’s start with an example: You want to divide all
elements of an array of cells by the same number n. A
straightforward way to implement this is:

: array/ (addr u n --)

-rot cells bounds u+do

i @ over / i !

1 cells +loop

drop ;

A more efficient version looks like this:

: array/ (addr u n --)

{: | reci[staged/-size] :}

reci[/f-stage1m

cells bounds u+do

i @ reci[/f-stage2m i !

1 cells +loop ;

This example first creates a local buffer reci[with
size staged/-size for storing the reciprocal data. Then
/f-stage1m computes the reciprocal of n and stores it in
reci[. Finally, inside the loop /f-stage2m uses the data
in reci[to compute the quotient.

Chapter 5: Forth Words 103

There are some limitations: Only positive divisors are
supported for /f-stage1m; for u/-stage1m you can use a
divisor of 2 or higher. You get an error if you try to use
an unsupported divisor. You must initalize the reciprocal
buffer for the floored second-stage words with /f-stage1m

and for the unsigned second-stage words with u/-stage1m.
You must not modify the reciprocal buffer between the first
stage and the second stage; basically, don’t treat it as a
memory buffer, but as something that is only mutable by
the first stage; the point of this rule is that future versions
of Gforth will not consider aliasing of this buffer.

The words are:

staged/-size (– u) gforth “staged-slash-size”

Size of buffer for u/-stage1m or /f-stage1m.

/f-stage1m (n addr-reci –) gforth “slash-f-stage1m”

Compute the reciprocal of n and store it in the buffer
addr-reci of size staged/-size. Throws an error if n<1.

/f-stage2m (n1 a-reci – nquotient) gforth “slash-f-
stage2m”

Nquotient is the result of dividing n1 by the divisor rep-
resented by a-reci, which was computed by /f-stage1m.

modf-stage2m (n1 a-reci – umodulus) gforth “mod-f-
stage2m”

Umodulus is the remainder of dividing n1 by the
divisor represented by a-reci, which was computed by
/f-stage1m.

/modf-stage2m (n1 a-reci – umodulus nquotient) gforth “slash-
mod-f-stage2m”

Nquotient is the quotient and umodulus is the remain-
der of dividing n1 by the divisor represented by a-reci,
which was computed by /f-stage1m.

Chapter 5: Forth Words 104

u/-stage1m (u addr-reci –) gforth “u-slash-stage1m”

Compute the reciprocal of u and store it in the buffer
addr-reci of size staged/-size. Throws an error if u<2.

u/-stage2m (u1 a-reci – uquotient) gforth “u-slash-
stage2m”

Uquotient is the result of dividing u1 by the divisor rep-
resented by a-reci, which was computed by u/-stage1m.

umod-stage2m (u1 a-reci – umodulus) gforth “u-mod-
stage2m”

Umodulus is the remainder of dividing u1 by the
divisor represented by a-reci, which was computed by
u/-stage1m.

u/mod-stage2m (u1 a-reci – umodulus uquotient) gforth “u-
slash-mod-stage2m”

Uquotient is the quotient and umodulus is the remain-
der of dividing u1 by the divisor represented by a-reci,
which was computed by u/-stage1m.

Gforth currently does not support staged symmetrical
division.

You can recover the divisor from (the address of) a
reciprocal with staged/-divisor @:

staged/-divisor (addr1 – addr2) gforth “staged-slash-
divisor”

Addr1 is the address of a reciprocal, addr2 is the ad-
dress containing the divisor from which the reciprocal was
computed.

This can be useful when looking at the decompiler out-
put of Gforth: a division by a constant is often compiled
to a literal containing the address of a reciprocal followed
by a second-stage word.

Chapter 5: Forth Words 105

The performance impact of using these words strongly
depends on the architecture (does it have hardware divi-
sion?) and the specific implementation (how fast is hard-
ware division?), but just to give you an idea about the
relative performance of these words, here are the cycles
per iteration of a microbenchmark (which performs the
mentioned word once per iteration) on two AMD64 imple-
mentations; the norm column shows the normal division
word (e.g., u/), while the stg2 column shows the corre-
sponding stage2 word (e.g., u/-stage2m):

Skylake Zen2

norm stg2 norm stg2

41.3 15.8 u/ 35.2 21.4 u/

39.8 19.7 umod 36.9 25.8 umod

44.0 25.3 u/mod 43.0 33.9 u/mod

48.7 16.9 /f 36.2 22.5 /f

47.9 20.5 modf 37.9 27.1 modf

53.0 24.6 /modf 45.8 35.4 /modf

227.2 u/stage1 101.9 u/stage1

159.8 /fstage1 97.7 /fstage1

5.5.6 Bitwise operations

and (w1 w2 – w) core “and”

or (w1 w2 – w) core “or”

xor (w1 w2 – w) core “x-or”

invert (w1 – w2) core “invert”

mux (u1 u2 u3 – u) gforth “mux”

Multiplex: For every bit in u3 : for a 1 bit, select the
corresponding bit from u1, otherwise the corresponding bit
from u2. E.g., %0011 %1100 %1010 mux gives %0110

lshift (u1 u – u2) core “l-shift”

Chapter 5: Forth Words 106

Shift u1 left by u bits.

rshift (u1 u – u2) core “r-shift”

Shift u1 (cell) right by u bits, filling the shifted-in bits
with zero (logical/unsigned shift).

arshift (n1 u – n2) gforth “ar-shift”

Shift n1 (cell) right by u bits, filling the shifted-in bits
from the sign bit of n1 (arithmetic shift).

dlshift (ud1 u – ud2) gforth “dlshift”

Shift ud1 (double-cell) left by u bits.

drshift (ud1 u – ud2) gforth “drshift”

Shift ud1 (double-cell) right by u bits, filling the
shifted-in bits with zero (logical/unsigned shift).

darshift (d1 u – d2) gforth “darshift”

Shift d1 (double-cell) right by u bits, filling the shifted-
in bits from the sign bit of d1 (arithmetic shift).

2* (n1 – n2) core “two-star”

Shift left by 1; also works on unsigned numbers

2/ (n1 – n2) core “two-slash”

Arithmetic shift right by 1. For signed numbers this is
a floored division by 2 (note that / not necessarily floors).

d2* (d1 – d2) double “d-two-star”

Shift double-cell left by 1; also works on unsigned num-
bers

d2/ (d1 – d2) double “d-two-slash”

Arithmetic shift right by 1. For signed numbers this is
a floored division by 2.

Unlike most other operations, rotation of narrower
units cannot easily be synthesized from rotation of wider

Chapter 5: Forth Words 107

units, so using cell-wide and double-wide rotation oper-
ations means that the results depend on the cell width.
For published algorithms or cell-width-independent re-
sults, you usually need to use a fixed-width rotation oper-
ation.

wrol (u1 u – u2) gforth “wrol”

Rotate the least significant 16 bits of u1 left by u bits,
set the other bits to 0.

wror (u1 u – u2) gforth “wror”

Rotate the least significant 16 bits of u1 right by u bits,
set the other bits to 0.

lrol (u1 u – u2) gforth “lrol”

Rotate the least significant 32 bits of u1 left by u bits,
set the other bits to 0.

lror (u1 u – u2) gforth “lror”

Rotate the least significant 32 bits of u1 right by u bits,
set the other bits to 0.

rol (u1 u – u2) gforth “rol”

Rotate all bits of u1 left by u bits.

ror (u1 u – u2) gforth “ror”

Rotate all bits of u1 right by u bits.

drol (ud1 u – ud2) gforth “drol”

Rotate all bits of ud1 (double-cell) left by u bits.

dror (ud1 u – ud2) gforth “dror”

Rotate all bits of ud1 (double-cell) right by u bits.

Chapter 5: Forth Words 108

5.5.7 Numeric comparison

Note that the words that compare for equality (= <> 0=

0<> d= d<> d0= d0<>) work for for both signed and un-
signed numbers.

< (n1 n2 – f) core “less-than”

<= (n1 n2 – f) gforth “less-or-equal”

<> (n1 n2 – f) core-ext “not-equals”

= (n1 n2 – f) core “equals”

> (n1 n2 – f) core “greater-than”

>= (n1 n2 – f) gforth “greater-or-equal”

0< (n – f) core “zero-less-than”

0<= (n – f) gforth “zero-less-or-equal”

0<> (n – f) core-ext “zero-not-equals”

0= (n – f) core “zero-equals”

0> (n – f) core-ext “zero-greater-than”

0>= (n – f) gforth “zero-greater-or-equal”

u< (u1 u2 – f) core “u-less-than”

u<= (u1 u2 – f) gforth “u-less-or-equal”

u> (u1 u2 – f) core-ext “u-greater-than”

u>= (u1 u2 – f) gforth “u-greater-or-equal”

within (u1 u2 u3 – f) core-ext “within”

u2<u3 and u1 in [u2,u3) or: u2>=u3 and u1 not in
[u3,u2). This works for unsigned and signed numbers (but
not a mixture). Another way to think about this word
is to consider the numbers as a circle (wrapping around
from max-u to 0 for unsigned, and from max-n to min-
n for signed numbers); now consider the range from u2
towards increasing numbers up to and excluding u3 (giving

Chapter 5: Forth Words 109

an empty range if u2=u3); if u1 is in this range, within
returns true.

d< (d1 d2 – f) double “d-less-than”

d<= (d1 d2 – f) gforth “d-less-or-equal”

d<> (d1 d2 – f) gforth “d-not-equals”

d= (d1 d2 – f) double “d-equals”

d> (d1 d2 – f) gforth “d-greater-than”

d>= (d1 d2 – f) gforth “d-greater-or-equal”

d0< (d – f) double “d-zero-less-than”

d0<= (d – f) gforth “d-zero-less-or-equal”

d0<> (d – f) gforth “d-zero-not-equals”

d0= (d – f) double “d-zero-equals”

d0> (d – f) gforth “d-zero-greater-than”

d0>= (d – f) gforth “d-zero-greater-or-equal”

du< (ud1 ud2 – f) double-ext “d-u-less-than”

du<= (ud1 ud2 – f) gforth “d-u-less-or-equal”

du> (ud1 ud2 – f) gforth “d-u-greater-than”

du>= (ud1 ud2 – f) gforth “d-u-greater-or-equal”

5.5.8 Floating Point

For the rules used by the text interpreter for recognising
floating-point numbers see Section 5.13.2 [Number Con-
version], page 199.

Gforth has a separate floating point stack, but the doc-
umentation uses the unified notation.1

1 It’s easy to generate the separate notation from that by just sep-
arating the floating-point numbers out: e.g. (n r1 u r2 -- r3)

becomes (n u --) (F: r1 r2 -- r3).

Chapter 5: Forth Words 110

Floating point numbers have a number of unpleasant
surprises for the unwary (e.g., floating point addition
is not associative) and even a few for the wary. You
should not use them unless you know what you are
doing or you don’t care that the results you get are
totally bogus. If you want to learn about the problems
of floating point numbers (and how to avoid them), you
might start with David Goldberg, What Every Computer
Scientist Should Know About Floating-Point Arithmetic
(http://docs.sun.com/source/806-3568/ncg_goldberg.html),
ACM Computing Surveys 23(1):5−48, March 1991.

Conversion between integers and floating-point:

s>f (n – r) float “s-to-f”

d>f (d – r) float “d-to-f”

f>s (r – n) float “f-to-s”

f>d (r – d) float “f-to-d”

Arithmetics:

f+ (r1 r2 – r3) float “f-plus”

f- (r1 r2 – r3) float “f-minus”

f* (r1 r2 – r3) float “f-star”

f/ (r1 r2 – r3) float “f-slash”

fnegate (r1 – r2) float “f-negate”

fabs (r1 – r2) float-ext “f-abs”

fmax (r1 r2 – r3) float “f-max”

fmin (r1 r2 – r3) float “f-min”

floor (r1 – r2) float “floor”

Round towards the next smaller integral value, i.e.,
round toward negative infinity.

fround (r1 – r2) float “f-round”

http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html

Chapter 5: Forth Words 111

Round to the nearest integral value.

f** (r1 r2 – r3) float-ext “f-star-star”

r3 is r1 raised to the r2 th power.

fsqrt (r1 – r2) float-ext “f-square-root”

fexp (r1 – r2) float-ext “f-e-x-p”

fexpm1 (r1 – r2) float-ext “f-e-x-p-m-one”

r2=e**r1−1
fln (r1 – r2) float-ext “f-l-n”

flnp1 (r1 – r2) float-ext “f-l-n-p-one”

r2=ln(r1+1)

flog (r1 – r2) float-ext “f-log”

The decimal logarithm.

falog (r1 – r2) float-ext “f-a-log”

r2=10**r1

f2* (r1 – r2) gforth “f2*”

Multiply r1 by 2.0e0

f2/ (r1 – r2) gforth “f2/”

Multiply r1 by 0.5e0

1/f (r1 – r2) gforth “1/f”

Divide 1.0e0 by r1.

Angles in floating point operations are given in radians
(a full circle has 2 pi radians).

fsin (r1 – r2) float-ext “f-sine”

fcos (r1 – r2) float-ext “f-cos”

fsincos (r1 – r2 r3) float-ext “f-sine-cos”

Chapter 5: Forth Words 112

r2=sin(r1), r3=cos(r1)

ftan (r1 – r2) float-ext “f-tan”

fasin (r1 – r2) float-ext “f-a-sine”

facos (r1 – r2) float-ext “f-a-cos”

fatan (r1 – r2) float-ext “f-a-tan”

fatan2 (r1 r2 – r3) float-ext “f-a-tan-two”

r1/r2=tan(r3). ANS Forth does not require, but prob-
ably intends this to be the inverse of fsincos. In gforth
it is.

fsinh (r1 – r2) float-ext “f-cinch”

fcosh (r1 – r2) float-ext “f-cosh”

ftanh (r1 – r2) float-ext “f-tan-h”

fasinh (r1 – r2) float-ext “f-a-cinch”

facosh (r1 – r2) float-ext “f-a-cosh”

fatanh (r1 – r2) float-ext “f-a-tan-h”

pi (– r) gforth “pi”

Fconstant – r is the value pi; the ratio of a circle’s
area to its diameter.

One particular problem with floating-point arithmetic
is that comparison for equality often fails when you would
expect it to succeed. For this reason approximate equality
is often preferred (but you still have to know what you are
doing). Also note that IEEE NaNs may compare differ-
ently from what you might expect. The comparison words
are:

f~rel (r1 r2 r3 – flag) gforth “f~rel”

Approximate equality with relative error: |r1-
r2|<r3*|r1+r2|.

f~abs (r1 r2 r3 – flag) gforth “f~abs”

Chapter 5: Forth Words 113

Approximate equality with absolute error: |r1-r2|<r3.

f~ (r1 r2 r3 – flag) float-ext “f-proximate”

ANS Forth medley for comparing r1 and r2 for equality:
r3>0: f~abs; r3=0: bitwise comparison; r3<0: fnegate

f~rel.

f= (r1 r2 – f) gforth “f-equals”

f<> (r1 r2 – f) gforth “f-not-equals”

f< (r1 r2 – f) float “f-less-than”

f<= (r1 r2 – f) gforth “f-less-or-equal”

f> (r1 r2 – f) gforth “f-greater-than”

f>= (r1 r2 – f) gforth “f-greater-or-equal”

f0< (r – f) float “f-zero-less-than”

f0<= (r – f) gforth “f-zero-less-or-equal”

f0<> (r – f) gforth “f-zero-not-equals”

f0= (r – f) float “f-zero-equals”

f0> (r – f) gforth “f-zero-greater-than”

f0>= (r – f) gforth “f-zero-greater-or-equal”

5.6 Stack Manipulation

Gforth maintains a number of separate stacks:

• A data stack (also known as the parameter stack) – for
characters, cells, addresses, and double cells.

• A floating point stack – for holding floating point (FP)
numbers.

• A return stack – for holding the return addresses of
colon definitions and other (non-FP) data.

• A locals stack – for holding local variables.

Chapter 5: Forth Words 114

5.6.1 Data stack

drop (w –) core “drop”

nip (w1 w2 – w2) core-ext “nip”

dup (w – w w) core “dupe”

over (w1 w2 – w1 w2 w1) core “over”

third (w1 w2 w3 – w1 w2 w3 w1) gforth “third”

fourth (w1 w2 w3 w4 – w1 w2 w3 w4 w1) gforth “fourth”

tuck (w1 w2 – w2 w1 w2) core-ext “tuck”

swap (w1 w2 – w2 w1) core “swap”

pick (S:... u – S:... w) core-ext “pick”

Actually the stack effect is x0 ... xu u -- x0 ... xu

x0 .

rot (w1 w2 w3 – w2 w3 w1) core “rote”

-rot (w1 w2 w3 – w3 w1 w2) gforth “not-rote”

?dup (w – S:... w) core “question-dupe”

Actually the stack effect is: (w -- 0 | w w). It per-
forms a dup if w is nonzero.

roll (x0 x1 .. xn n – x1 .. xn x0) core-ext “roll”

2drop (w1 w2 –) core “two-drop”

2nip (w1 w2 w3 w4 – w3 w4) gforth “two-nip”

2dup (w1 w2 – w1 w2 w1 w2) core “two-dupe”

2over (w1 w2 w3 w4 – w1 w2 w3 w4 w1 w2) core “two-
over”

2tuck (w1 w2 w3 w4 – w3 w4 w1 w2 w3 w4) gforth “two-
tuck”

2swap (w1 w2 w3 w4 – w3 w4 w1 w2) core “two-swap”

2rot (w1 w2 w3 w4 w5 w6 – w3 w4 w5 w6 w1 w2) double-
ext “two-rote”

Chapter 5: Forth Words 115

5.6.2 Floating point stack

floating-stack (– n) environment “floating-stack”

n is non-zero, showing that Gforth maintains a separate
floating-point stack of depth n.

fdrop (r –) float “f-drop”

fnip (r1 r2 – r2) gforth “f-nip”

fdup (r – r r) float “f-dupe”

fover (r1 r2 – r1 r2 r1) float “f-over”

fthird (r1 r2 r3 – r1 r2 r3 r1) gforth “fthird”

ffourth (r1 r2 r3 r4 – r1 r2 r3 r4 r1) gforth “ffourth”

ftuck (r1 r2 – r2 r1 r2) gforth “f-tuck”

fswap (r1 r2 – r2 r1) float “f-swap”

fpick (f:... u – f:... r) gforth “fpick”

Actually the stack effect is r0 ... ru u -- r0 ... ru

r0 .

frot (r1 r2 r3 – r2 r3 r1) float “f-rote”

5.6.3 Return stack

A Forth system is allowed to keep local variables on the
return stack. This is reasonable, as local variables usually
eliminate the need to use the return stack explicitly. So,
if you want to produce a standard compliant program and
you are using local variables in a word, forget about return
stack manipulations in that word (refer to the standard
document for the exact rules).

>r (w – R:w) core “to-r”

r> (R:w – w) core “r-from”

r@ (– w ; R: w – w) core “r-fetch”

Chapter 5: Forth Words 116

rdrop (R:w –) gforth “rdrop”

2>r (w1 w2 – R:w1 R:w2) core-ext “two-to-r”

2r> (R:w1 R:w2 – w1 w2) core-ext “two-r-from”

2r@ (R:w1 R:w2 – R:w1 R:w2 w1 w2) core-ext “two-r-
fetch”

2rdrop (R:w1 R:w2 –) gforth “two-r-drop”

5.6.4 Locals stack

Gforth uses an extra locals stack. It is described, along
with the reasons for its existence, in Section 5.21.1.4 [Lo-
cals implementation], page 276.

5.6.5 Stack pointer manipulation

sp0 (– a-addr) gforth “sp0”

User variable – initial value of the data stack pointer.

sp@ (S:... – a-addr) gforth “sp-fetch”

sp! (a-addr – S:...) gforth “sp-store”

fp0 (– a-addr) gforth “fp0”

User variable – initial value of the floating-point stack
pointer.

fp@ (f:... – f-addr) gforth “fp-fetch”

fp! (f-addr – f:...) gforth “fp-store”

rp0 (– a-addr) gforth “rp0”

User variable – initial value of the return stack pointer.

rp@ (– a-addr) gforth “rp-fetch”

rp! (a-addr –) gforth “rp-store”

lp0 (– a-addr) gforth “lp0”

Chapter 5: Forth Words 117

User variable – initial value of the locals stack pointer.

lp@ (– addr) gforth “lp-fetch”

lp! (c-addr –) gforth “lp-store”

5.7 Memory

In addition to the standard Forth memory allocation
words, there is also a garbage collector (http://www.
complang.tuwien.ac.at/forth/garbage-collection.

zip).

5.7.1 Memory model

Standard Forth considers a Forth system as consisting of
several address spaces, of which only data space is man-
aged and accessible with the memory words. Memory
not necessarily in data space includes the stacks, the code
(called code space) and the headers (called name space).
In Gforth everything is in data space, but the code for the
primitives is usually read-only.

Data space is divided into a number of areas: The (data
space portion of the) dictionary2, the heap, and a number
of system-allocated buffers.

Gforth provides one big address space, and address
arithmetic can be performed between any addresses. How-
ever, in the dictionary headers or code are interleaved with
data, so almost the only contiguous data space regions
there are those described by Standard Forth as contigu-
ous; but you can be sure that the dictionary is allocated

2 Sometimes, the term dictionary is used to refer to the search
data structure embodied in word lists and headers, because it is
used for looking up names, just as you would in a conventional
dictionary.

http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Chapter 5: Forth Words 118

towards increasing addresses even between contiguous re-
gions. The memory order of allocations in the heap is
platform-dependent (and possibly different from one run
to the next).

5.7.2 Dictionary allocation

Dictionary allocation is a stack-oriented allocation scheme,
i.e., if you want to deallocate X, you also deallocate every-
thing allocated after X.

The allocations using the words below are contiguous
and grow the region towards increasing addresses. Other
words that allocate dictionary memory of any kind (i.e.,
defining words including :noname) end the contiguous re-
gion and start a new one.

In Standard Forth only created words are guaranteed
to produce an address that is the start of the following
contiguous region. In particular, the cell allocated by
variable is not guaranteed to be contiguous with follow-
ing alloted memory.

You can deallocate memory by using allot with a neg-
ative argument (with some restrictions, see allot). For
larger deallocations use marker.

here (– addr) core “here”

Return the address of the next free location in data
space.

unused (– u) core-ext “unused”

Return the amount of free space remaining (in address
units) in the region addressed by here.

allot (n –) core “allot”

Reserve n address units of data space without initial-
ization. n is a signed number, passing a negative n releases

Chapter 5: Forth Words 119

memory. In ANS Forth you can only deallocate memory
from the current contiguous region in this way. In Gforth
you can deallocate anything in this way but named words.
The system does not check this restriction.

c, (c –) core “c-comma”

Reserve data space for one char and store c in the space.

f, (f –) gforth “f,”

Reserve data space for one floating-point number and
store f in the space.

, (w –) core “comma”

Reserve data space for one cell and store w in the space.

2, (w1 w2 –) gforth “2,”

Reserve data space for two cells and store the double
w1 w2 there, w2 first (lower address).

Memory accesses have to be aligned (see Section 5.7.5
[Address arithmetic], page 123). So of course you should
allocate memory in an aligned way, too. I.e., before al-
locating allocating a cell, here must be cell-aligned, etc.
The words below align here if it is not already. Basically
it is only already aligned for a type, if the last allocation
was a multiple of the size of this type and if here was
aligned for this type before.

After freshly createing a word, here is aligned in
Standard Forth (maxaligned in Gforth).

align (–) core “align”

If the data-space pointer is not aligned, reserve enough
space to align it.

falign (–) float “f-align”

Chapter 5: Forth Words 120

If the data-space pointer is not float-aligned, reserve
enough space to align it.

sfalign (–) float-ext “s-f-align”

If the data-space pointer is not single-float-aligned, re-
serve enough space to align it.

dfalign (–) float-ext “d-f-align”

If the data-space pointer is not double-float-aligned, re-
serve enough space to align it.

maxalign (–) gforth “maxalign”

Align data-space pointer for all alignment require-
ments.

cfalign (–) gforth “cfalign”

Align data-space pointer for code field requirements
(i.e., such that the corresponding body is maxaligned).

5.7.3 Heap allocation

Heap allocation supports deallocation of allocated memory
in any order. Dictionary allocation is not affected by it
(i.e., it does not end a contiguous region). In Gforth, these
words are implemented using the standard C library calls
malloc(), free() and realloc().

The memory region produced by one invocation of
allocate or resize is internally contiguous. There is no
contiguity between such a region and any other region (in-
cluding others allocated from the heap).

allocate (u – a addr wior) memory “allocate”

Allocate u address units of contiguous data space. The
initial contents of the data space is undefined. If the al-
location is successful, a-addr is the start address of the

Chapter 5: Forth Words 121

allocated region and wior is 0. If the allocation fails, a-
addr is undefined and wior is a non-zero I/O result code.

free (a addr – wior) memory “free”

Return the region of data space starting at a-addr to
the system. The region must originally have been obtained
using allocate or resize. If the operational is successful,
wior is 0. If the operation fails, wior is a non-zero I/O
result code.

resize (a addr1 u – a addr2 wior) memory “resize”

Change the size of the allocated area at a-addr1 to u
address units, possibly moving the contents to a different
area. a-addr2 is the address of the resulting area. If the
operation is successful, wior is 0. If the operation fails,
wior is a non-zero I/O result code. If a-addr1 is 0, Gforth’s
(but not the Standard) resize allocates u address units.

5.7.4 Memory Access

@ (a-addr – w) core “fetch”

w is the cell stored at a addr.

! (w a-addr –) core “store”

Store w into the cell at a-addr.

+! (n a-addr –) core “plus-store”

Add n to the cell at a-addr.

c@ (c-addr – c) core “c-fetch”

c is the char stored at c addr.

c! (c c-addr –) core “c-store”

Store c into the char at c-addr.

2@ (a-addr – w1 w2) core “two-fetch”

Chapter 5: Forth Words 122

w2 is the content of the cell stored at a-addr, w1 is the
content of the next cell.

2! (w1 w2 a-addr –) core “two-store”

Store w2 into the cell at c-addr and w1 into the next
cell.

f@ (f-addr – r) float “f-fetch”

r is the float at address f-addr.

f! (r f-addr –) float “f-store”

Store r into the float at address f-addr.

sf@ (sf-addr – r) float-ext “s-f-fetch”

Fetch the single-precision IEEE floating-point value r
from the address sf-addr.

sf! (r sf-addr –) float-ext “s-f-store”

Store r as single-precision IEEE floating-point value to
the address sf-addr.

df@ (df-addr – r) float-ext “d-f-fetch”

Fetch the double-precision IEEE floating-point value r
from the address df-addr.

df! (r df-addr –) float-ext “d-f-store”

Store r as double-precision IEEE floating-point value
to the address df-addr.

sw@ (c-addr – n) gforth “s-w-fetch”

n is the sign-extended 16-bit value stored at c addr.

uw@ (c-addr – u) gforth “u-w-fetch”

u is the zero-extended 16-bit value stored at c addr.

w! (w c-addr –) gforth “w-store”

Store the bottom 16 bits of w at c addr.

sl@ (c-addr – n) gforth “s-l-fetch”

Chapter 5: Forth Words 123

n is the sign-extended 32-bit value stored at c addr.

ul@ (c-addr – u) gforth “u-l-fetch”

u is the zero-extended 32-bit value stored at c addr.

l! (w c-addr –) gforth “l-store”

Store the bottom 32 bits of w at c addr.

5.7.5 Address arithmetic

Address arithmetic is the foundation on which you can
build data structures like arrays, records (see Section 5.22
[Structures], page 284) and objects (see Section 5.23
[Object-oriented Forth], page 293).

Standard Forth does not specify the sizes of the data
types. Instead, it offers a number of words for computing
sizes and doing address arithmetic. Address arithmetic is
performed in terms of address units (aus); on most systems
the address unit is one byte. Note that a character may
have more than one au, so chars is no noop (on platforms
where it is a noop, it compiles to nothing).

The basic address arithmetic words are + and -. E.g.,
if you have the address of a cell, perform 1 cells +, and
you will have the address of the next cell.

Standard Forth also defines words for aligning ad-
dresses for specific types. Many computers require that
accesses to specific data types must only occur at specific
addresses; e.g., that cells may only be accessed at addresses
divisible by 4. Even if a machine allows unaligned accesses,
it can usually perform aligned accesses faster.

For the performance-conscious: alignment operations
are usually only necessary during the definition of a data
structure, not during the (more frequent) accesses to it.

Chapter 5: Forth Words 124

Standard Forth defines no words for character-
aligning addresses; in Forth-2012 all addresses are
character-aligned.

Standard Forth guarantees that addresses returned by
CREATEd words are cell-aligned; in addition, Gforth guar-
antees that these addresses are aligned for all purposes.

Note that the Standard Forth word char has nothing
to do with address arithmetic.

chars (n1 – n2) core “chars”

n2 is the number of address units of n1 chars.""

char+ (c-addr1 – c-addr2) core “char-plus”

1 chars +.

cells (n1 – n2) core “cells”

n2 is the number of address units of n1 cells.

cell+ (a-addr1 – a-addr2) core “cell-plus”

1 cells +

cell- (a-addr1 – a-addr2) core “cell-minus”

1 cells -

cell/ (n1 – n2) gforth “cell-divide”

n2 is the number of cells that fit into n1

cell (– u) gforth “cell”

Constant – 1 cells

aligned (c-addr – a-addr) core “aligned”

a-addr is the first aligned address greater than or equal
to c-addr.

floats (n1 – n2) float “floats”

n2 is the number of address units of n1 floats.

float+ (f-addr1 – f-addr2) float “float-plus”

Chapter 5: Forth Words 125

1 floats +.

float (– u) gforth “float”

Constant – the number of address units corresponding
to a floating-point number.

faligned (c-addr – f-addr) float “f-aligned”

f-addr is the first float-aligned address greater than or
equal to c-addr.

sfloats (n1 – n2) float-ext “s-floats”

n2 is the number of address units of n1 single-precision
IEEE floating-point numbers.

sfloat+ (sf-addr1 – sf-addr2) float-ext “s-float-plus”

1 sfloats +.

sfaligned (c-addr – sf-addr) float-ext “s-f-aligned”

sf-addr is the first single-float-aligned address greater
than or equal to c-addr.

dfloats (n1 – n2) float-ext “d-floats”

n2 is the number of address units of n1 double-
precision IEEE floating-point numbers.

dfloat+ (df-addr1 – df-addr2) float-ext “d-float-plus”

1 dfloats +.

dfaligned (c-addr – df-addr) float-ext “d-f-aligned”

df-addr is the first double-float-aligned address greater
than or equal to c-addr.

maxaligned (addr1 – addr2) gforth “maxaligned”

addr2 is the first address after addr1 that satisfies all
alignment restrictions. maxaligned"

cfaligned (addr1 – addr2) gforth “cfaligned”

Chapter 5: Forth Words 126

addr2 is the first address after addr1 that is aligned
for a code field (i.e., such that the corresponding body is
maxaligned).

ADDRESS-UNIT-BITS (– n) environment “ADDRESS-
UNIT-BITS”

Size of one address unit, in bits.

/w (– u) gforth “slash-w”

address units for a 16-bit value

/l (– u) gforth “slash-l”

address units for a 32-bit value

5.7.6 Memory Blocks

Memory blocks often represent character strings; For ways
of storing character strings in memory see Section 5.19.3
[String Formats], page 245. For other string-processing
words see Section 5.19.4 [Displaying characters and
strings], page 245.

A few of these words work on address unit blocks. In
that case, you usually have to insert CHARS before the word
when working on character strings. Most words work on
character blocks, and expect a char-aligned address.

When copying characters between overlapping memory
regions, use chars move or choose carefully between cmove

and cmove>.

move (c-from c-to ucount –) core “move”

Copy the contents of ucount aus at c-from to c-to. move
works correctly even if the two areas overlap.

erase (addr u –) core-ext “erase”

Clear all bits in u aus starting at addr.

cmove (c-from c-to u –) string “c-move”

Chapter 5: Forth Words 127

Copy the contents of ucount characters from data space
at c-from to c-to. The copy proceeds char-by-char from
low address to high address; i.e., for overlapping areas it
is safe if c-to<=c-from.

cmove> (c-from c-to u –) string “c-move-up”

Copy the contents of ucount characters from data space
at c-from to c-to. The copy proceeds char-by-char from
high address to low address; i.e., for overlapping areas it
is safe if c-to>=c-from.

fill (c-addr u c –) core “fill”

Store c in u chars starting at c-addr.

blank (c-addr u –) string “blank”

Store the space character into u chars starting at c-
addr.

compare (c-addr1 u1 c-addr2 u2 – n) string “compare”

Compare two strings lexicographically. If they are
equal, n is 0; if the first string is smaller, n is -1; if the
first string is larger, n is 1. Currently this is based on
the machine’s character comparison. In the future, this
may change to consider the current locale and its collation
order.

str= (c-addr1 u1 c-addr2 u2 – f) gforth “str=”

str< (c-addr1 u1 c-addr2 u2 – f) gforth “str<”

string-prefix? (c-addr1 u1 c-addr2 u2 – f) gforth “string-
prefix?”

Is c-addr2 u2 a prefix of c-addr1 u1?

search (c-addr1 u1 c-addr2 u2 – c-addr3 u3 flag) string “search”

Search the string specified by c-addr1, u1 for the string
specified by c-addr2, u2. If flag is true: match was found

Chapter 5: Forth Words 128

at c-addr3 with u3 characters remaining. If flag is false:
no match was found; c-addr3, u3 are equal to c-addr1, u1.

-trailing (c addr u1 – c addr u2) string “dash-
trailing”

Adjust the string specified by c-addr, u1 to remove all
trailing spaces. u2 is the length of the modified string.

/string (c-addr1 u1 n – c-addr2 u2) string “slash-string”

Adjust the string specified by c-addr1, u1 to remove n
characters from the start of the string.

bounds (addr u – addr+u addr) gforth “bounds”

Given a memory block represented by starting address
addr and length u in aus, produce the end address addr+u
and the start address in the right order for u+do or ?do.

pad (– c-addr) core-ext “pad”

c-addr is the address of a transient region that can be
used as temporary data storage. At least 84 characters of
space is available.

5.8 Control Structures

Control structures in Forth cannot be used interpretively,
only in a colon definition3. We do not like this limitation,
but have not seen a satisfying way around it yet, although
many schemes have been proposed.

5.8.1 Selection

flag

IF

3 To be precise, they have no interpretation semantics (see
Section 5.10 [Interpretation and Compilation Semantics],
page 177).

Chapter 5: Forth Words 129

code

ENDIF

If flag is non-zero (as far as IF etc. are concerned, a
cell with any bit set represents truth) code is executed.

flag

IF

code1

ELSE

code2

ENDIF

If flag is true, code1 is executed, otherwise code2 is
executed.

You can use THEN instead of ENDIF. Indeed, THEN is
standard, and ENDIF is not, although it is quite popular.
We recommend using ENDIF, because it is less confusing for
people who also know other languages (and is not prone
to reinforcing negative prejudices against Forth in these
people). Adding ENDIF to a system that only supplies
THEN is simple:

: ENDIF POSTPONE then ; immediate

[According to Webster’s New Encyclopedic Dictionary,
then (adv.) has the following meanings:

... 2b: following next after in order ... 3d: as a necessary
consequence (if you were there, then you saw them).

Forth’s THEN has the meaning 2b, whereas THEN in Pas-
cal and many other programming languages has the mean-
ing 3d.]

Gforth also provides the words ?DUP-IF and ?DUP-0=-

IF, so you can avoid using ?dup. Using these alternatives
is also more efficient than using ?dup. Definitions in Stan-

Chapter 5: Forth Words 130

dard Forth for ENDIF, ?DUP-IF and ?DUP-0=-IF are pro-
vided in compat/control.fs.

x

CASE

x1 OF code1 ENDOF

x2 OF code2 ENDOF

...

(x) default-code (x)

ENDCASE ()

Executes the first codei, where the xi is equal to x.
If no xi matches, the optional default-code is executed.
The optional default case can be added by simply writing
the code after the last ENDOF. It may use x, which is on
top of the stack, but must not consume it. The value x
is consumed by this construction (either by an OF that
matches, or by the ENDCASE, if no OF matches). Example:

: num-name (n -- c-addr u)

case

0 of s" zero " endof

1 of s" one " endof

2 of s" two " endof

\ default case:

s" other number"

rot \ get n on top so ENDCASE can drop it

endcase ;

You can also use (the non-standard) ?of to use case

as a general selection structure for more than two alterna-
tives. ?Of takes a flag. Example:

: sgn (n1 -- n2)

\ sign function

case

Chapter 5: Forth Words 131

dup 0< ?of drop -1 endof

dup 0> ?of drop 1 endof

dup \ n1=0 -> n2=0; dup an item, to be consumed by ENDCASE

endcase ;

Programming style note:To keep the code understand-
able, you should ensure that you change the stack in the
same way (wrt. number and types of stack items consumed
and pushed) on all paths through a selection structure.

5.8.2 Simple Loops

BEGIN

code1

flag

WHILE

code2

REPEAT

code1 is executed and flag is computed. If it is true,
code2 is executed and the loop is restarted; If flag is false,
execution continues after the REPEAT.

BEGIN

code

flag

UNTIL

code is executed. The loop is restarted if flag is false.

Programming style note:To keep the code understand-
able, a complete iteration of the loop should not change
the number and types of the items on the stacks.

BEGIN

code

AGAIN

This is an endless loop.

Chapter 5: Forth Words 132

5.8.3 Counted Loops

The basic counted loop is:

limit start

?DO

body

LOOP

This performs one iteration for every integer, starting
from start and up to, but excluding limit. The counter, or
index, can be accessed with i. For example, the loop:

10 0 ?DO

i .

LOOP

prints 0 1 2 3 4 5 6 7 8 9

The index of the innermost loop can be accessed with
i, the index of the next loop with j, and the index of the
third loop with k.

i (R:n – R:n n) core “i”

j (R:w R:w1 R:w2 – w R:w R:w1 R:w2) core “j”

k (R:w R:w1 R:w2 R:w3 R:w4 – w R:w R:w1 R:w2 R:w3 R:w4) gforth “k”

The loop control data are kept on the return stack, so
there are some restrictions on mixing return stack accesses
and counted loop words. In particuler, if you put values on
the return stack outside the loop, you cannot read them
inside the loop4. If you put values on the return stack
within a loop, you have to remove them before the end of
the loop and before accessing the index of the loop.

There are several variations on the counted loop:

4 well, not in a way that is portable.

Chapter 5: Forth Words 133

• LEAVE leaves the innermost counted loop immediately;
execution continues after the associated LOOP or NEXT.
For example:

10 0 ?DO i DUP . 3 = IF LEAVE THEN LOOP

prints 0 1 2 3

• UNLOOP prepares for an abnormal loop exit, e.g., via
EXIT. UNLOOP removes the loop control parameters
from the return stack so EXIT can get to its return ad-
dress. For example:

: demo 10 0 ?DO i DUP . 3 = IF UNLOOP EXIT THEN LOOP ." Done" ;

prints 0 1 2 3

• If start is greater than limit, a ?DO loop is entered (and
LOOP iterates until they become equal by wrap-around
arithmetic). This behaviour is usually not what you
want. Therefore, Gforth offers +DO and U+DO (as re-
placements for ?DO), which do not enter the loop if start
is greater than limit ; +DO is for signed loop parameters,
U+DO for unsigned loop parameters.

• ?DO can be replaced by DO. DO always enters the loop,
independent of the loop parameters. Do not use DO,
even if you know that the loop is entered in any case.
Such knowledge tends to become invalid during mainte-
nance of a program, and then the DO will make trouble.

• LOOP can be replaced with n +LOOP; this updates the
index by n instead of by 1. The loop is terminated
when the border between limit-1 and limit is crossed.
E.g.:

4 0 +DO i . 2 +LOOP

prints 0 2

4 1 +DO i . 2 +LOOP

Chapter 5: Forth Words 134

prints 1 3

• The behaviour of n +LOOP is peculiar when n is nega-
tive:

-1 0 ?DO i . -1 +LOOP

prints 0 -1

0 0 ?DO i . -1 +LOOP

prints nothing.

Therefore we recommend avoiding n +LOOP with nega-
tive n. One alternative is u -LOOP, which reduces the
index by u each iteration. The loop is terminated when
the border between limit+1 and limit is crossed. Gforth
also provides -DO and U-DO for down-counting loops.
E.g.:

-2 0 -DO i . 1 -LOOP

prints 0 -1

-1 0 -DO i . 1 -LOOP

prints 0

0 0 -DO i . 1 -LOOP

prints nothing.

Unfortunately, +DO, U+DO, -DO, U-DO and -LOOP are not
defined in Standard Forth. However, an implementation
for these words that uses only standard words is provided
in compat/loops.fs.

Another counted loop is:

n

FOR

body

NEXT

Chapter 5: Forth Words 135

This is the preferred loop of native code compiler writ-
ers who are too lazy to optimize ?DO loops properly. This
loop structure is not defined in Standard Forth. In Gforth,
this loop iterates n+1 times; i produces values starting
with n and ending with 0. Other Forth systems may be-
have differently, even if they support FOR loops. To avoid
problems, don’t use FOR loops.

5.8.4 Begin loops with multiple exits

For counted loops, you can use leave in several places.
For begin loops, you have the following options:

Use exit (possibly several times) in the loop to leave
not just the loop, but the whole colon definition. E.g.,:

: foo

begin

condition1 while

condition2 if

exit-code2 exit then

condition3 if

exit-code3 exit then

...

repeat

exit-code1 ;

The disadvantage of this approach is that, if you want
to have some common code afterwards, you either have to
wrap foo in another word that contains the common code,
or you have to call the common code several times, from
each exit-code.

Another approach is to use several whiles in a begin

loop. You have to append a then behind the loop for every
additional while. E.g.,;

Chapter 5: Forth Words 136

begin

condition1 while

condition2 while

condition3 while

again then then then

Here I used again at the end of the loop so that I
would have a then for each while; repeat would result in
one less then, but otherwise the same behaviour. For an
explanation of why this works, See Section 5.8.6 [Arbitrary
control structures], page 138.

We can have common code afterwards, but, as pre-
sented above, we cannot have different exit-codes for the
different exits. You can have these different exit-codes, as
follows:

begin

condition1 while

condition2 while

condition3 while

again then exit-code3

else exit-code2 then

else exit-code1 then

This is relatively hard to comprehend, because the exit-
codes are relatively far from the exit conditions (it does
not help that we are not used to such control structures,
either).

5.8.5 General control structures with case

Gforth provides an extended case that solves the prob-
lems of the multi-exit loops discussed above, and offers
additional options. You can find a portable implementa-
tion of this extended case in compat/caseext.fs.

Chapter 5: Forth Words 137

There are three additional words in the extension. The
first is ?of which allows general tests (rather than just
testing for equality) in a case; e.g.,

: sgn (n -- -1|0|1)

(n) case

dup 0 < ?of drop -1 endof

dup 0 > ?of drop 1 endof

\ otherwise leave the 0 on the stack

0 endcase ;

Note that endcase drops a value, which works fine
much of the time with of, but usually not with ?of, so
we leave a 0 on the stack for endcase to drop. The n that
is passed into sgn is also 0 if neither ?of triggers, and that
is then passed out.

The second additional word is next-case, which allows
turning case into a loop. Our triple-exit loop becomes:

case

condition1 ?of exit-code1 endof

condition2 ?of exit-code2 endof

condition3 ?of exit-code3 endof

...

next-case

common code afterwards

As you can see, this solves both problems of the vari-
ants discussed above (see Section 5.8.4 [BEGIN loops with
multiple exits], page 135). Note that next-case does not
drop a value, unlike endcase.5

The last additional word is contof, which is used in-
stead of endof and starts the next iteration instead of

5 Next-case has a -, unlike the other case words, because VFX
Forth contains a nextcase that drops a value.

Chapter 5: Forth Words 138

leaving the loop. This can be used in ways similar to Di-
jkstra’s guarded command do, e.g.:

: gcd (n1 n2 -- n)

case

2dup > ?of tuck - contof

2dup < ?of over - contof

endcase ;

Here the two ?ofs have different ways of continuing the
loop; when neither ?of triggers, the two numbers are equal
and are the gcd. Endcase drops one of them, leaving the
other as n.

You can also combine these words. Here’s an example
that uses each of the case words once, except endcase:

: collatz (u --)

\ print the 3n+1 sequence starting at u until we reach 1

case

dup .

1 of endof

dup 1 and ?of 3 * 1+ contof

2/

next-case ;

This example keeps the current value of the sequence
on the stack. If it is 1, the of triggers, drops the value,
and leaves the case structure. For odd numbers, the ?of

triggers, computes 3n+1, and starts the next iteration with
contof. Otherwise, if the number is even, it is divided by
2, and the loop is restarted with next-case.

5.8.6 Arbitrary control structures

Standard Forth permits and supports using control struc-
tures in a non-nested way. Information about incomplete

Chapter 5: Forth Words 139

control structures is stored on the control-flow stack. This
stack may be implemented on the Forth data stack, and
this is what we have done in Gforth.

An orig entry represents an unresolved forward branch,
a dest entry represents a backward branch target. A few
words are the basis for building any control structure possi-
ble (except control structures that need storage, like calls,
coroutines, and backtracking).

IF (compilation – orig ; run-time f –) core “IF”

At run-time, if f=0, execution continues after the THEN
(or ELSE) that consumes the orig, otherwise right after the
IF (see Section 5.8.1 [Selection], page 128).

AHEAD (compilation – orig ; run-time –) tools-ext “AHEAD”

At run-time, execution continues after the THEN that
consumes the orig.

THEN (compilation orig – ; run-time –) core “THEN”

The IF, AHEAD, ELSE or WHILE that pushed orig
jumps right after the THEN (see Section 5.8.1 [Selection],
page 128).

BEGIN (compilation – dest ; run-time –) core “BEGIN”

The UNTIL, AGAIN or REPEAT that consumes the dest
jumps right behind the BEGIN (see Section 5.8.2 [Simple
Loops], page 131).

UNTIL (compilation dest – ; run-time f –) core “UNTIL”

At run-time, if f=0, execution continues after the
BEGIN that produced dest, otherwise right after the UNTIL
(see Section 5.8.2 [Simple Loops], page 131).

AGAIN (compilation dest – ; run-time –) core-ext “AGAIN”

Chapter 5: Forth Words 140

At run-time, execution continues after the BEGIN that
produced the dest (see Section 5.8.2 [Simple Loops],
page 131).

CS-PICK (orig0/dest0 orig1/dest1 ... origu/destu u –
... orig0/dest0) tools-ext “c-s-pick”

CS-ROLL (destu/origu .. dest0/orig0 u – .. dest0/orig0 destu/origu) tools-
ext “c-s-roll”

CS-DROP (dest –) gforth “CS-DROP”

The Standard words CS-PICK and CS-ROLL allow you
to manipulate the control-flow stack in a portable way.
Without them, you would need to know how many stack
items are occupied by a control-flow entry (many systems
use one cell. In Gforth they currently take three, but this
may change in the future).

CS-PICK can only pick a dest and CS-DROP can only
drop a dest, because an orig must be resolved exactly once.

Some standard control structure words are built from
these words:

ELSE (compilation orig1 – orig2 ; run-time –) core “ELSE”

At run-time, execution continues after the THEN that
consumes the orig ; the IF, AHEAD, ELSE or WHILE that
pushed orig1 jumps right after the ELSE. (see Section 5.8.1
[Selection], page 128).

WHILE (compilation dest – orig dest ; run-time f –) core “WHILE”

At run-time, if f=0, execution continues after the
REPEAT (or THEN or ELSE) that consumes the orig, oth-
erwise right after the WHILE (see Section 5.8.2 [Simple
Loops], page 131).

REPEAT (compilation orig dest – ; run-time –) core “REPEAT”

Chapter 5: Forth Words 141

At run-time, execution continues after the BEGIN

that produced the dest ; the WHILE, IF, AHEAD or ELSE

that pushed orig jumps right after the REPEAT. (see
Section 5.8.2 [Simple Loops], page 131).

Gforth adds some more control-structure words:

ENDIF (compilation orig – ; run-time –) gforth “ENDIF”

Same as THEN.

?dup-IF (compilation – orig ; run-time n – n|) gforth “question-
dupe-if”

This is the preferred alternative to the idiom "?DUP

IF", since it can be better handled by tools like stack
checkers. Besides, it’s faster.

?DUP-0=-IF (compilation – orig ; run-time n – n|) gforth “question-
dupe-zero-equals-if”

Counted loop words constitute a separate group of words:

?DO (compilation – do-sys ; run-time w1 w2 – | loop-
sys) core-ext “question-do”

See Section 5.8.3 [Counted Loops], page 132.

+DO (compilation – do-sys ; run-time n1 n2 – | loop-
sys) gforth “plus-do”

See Section 5.8.3 [Counted Loops], page 132.

U+DO (compilation – do-sys ; run-time u1 u2 – | loop-
sys) gforth “u-plus-do”

See Section 5.8.3 [Counted Loops], page 132.

-DO (compilation – do-sys ; run-time n1 n2 – | loop-
sys) gforth “minus-do”

See Section 5.8.3 [Counted Loops], page 132.

U-DO (compilation – do-sys ; run-time u1 u2 – | loop-
sys) gforth “u-minus-do”

Chapter 5: Forth Words 142

See Section 5.8.3 [Counted Loops], page 132.

DO (compilation – do-sys ; run-time w1 w2 – loop-
sys) core “DO”

See Section 5.8.3 [Counted Loops], page 132.

FOR (compilation – do-sys ; run-time u – loop-sys) gforth “FOR”

See Section 5.8.3 [Counted Loops], page 132.

LOOP (compilation do-sys – ; run-time loop-sys1 – | loop-
sys2) core “LOOP”

See Section 5.8.3 [Counted Loops], page 132.

+LOOP (compilation do-sys – ; run-time loop-sys1 n –
| loop-sys2) core “plus-loop”

See Section 5.8.3 [Counted Loops], page 132.

-LOOP (compilation do-sys – ; run-time loop-sys1 u –
| loop-sys2) gforth “minus-loop”

See Section 5.8.3 [Counted Loops], page 132.

NEXT (compilation do-sys – ; run-time loop-sys1 – | loop-
sys2) gforth “NEXT”

See Section 5.8.3 [Counted Loops], page 132.

LEAVE (compilation – ; run-time loop-sys –) core “LEAVE”

See Section 5.8.3 [Counted Loops], page 132.

?LEAVE (compilation – ; run-time f | f loop-sys –) gforth “question-
leave”

See Section 5.8.3 [Counted Loops], page 132.

unloop (R:w1 R:w2 –) core “unloop”

DONE (compilation orig – ; run-time –) gforth “DONE”

resolves all LEAVEs up to the compilaton orig (from a
BEGIN)

Chapter 5: Forth Words 143

The standard does not allow using CS-PICK and
CS-ROLL on do-sys. Gforth allows it, but it’s your job to
ensure that for every ?DO etc. there is exactly one UNLOOP
on any path through the definition (LOOP etc. compile
an UNLOOP on the fall-through path). Also, you have to
ensure that all LEAVEs are resolved (by using one of the
loop-ending words or DONE).

Another group of control structure words are:

case (compilation – case-sys ; run-time –) core-
ext “case”

Start a case structure.

endcase (compilation case-sys – ; run-time x –) core-
ext “end-case”

Finish the case structure; drop x, and continue behind
the endcase. Dropping x is useful in the original case
construct (with only ofs), but you may have to supply an
x in other cases (especially when using ?of).

next-case (compilation case-sys – ; run-time –) gforth “next-
case”

Restart the case loop by jumping to the matching
case. Note that next-case does not drop a cell, unlike
endcase.

of (compilation – of-sys ; run-time x1 x2 – |x1) core-
ext “of”

If x1=x2, continue (dropping both); otherwise, leave x1
on the stack and jump behind endof or contof.

?of (compilation – of-sys ; run-time f –) gforth “question-
of”

If f is true, continue; otherwise, jump behind endof or
contof.

Chapter 5: Forth Words 144

endof (compilation case-sys1 of-sys – case-sys2 ; run-
time –) core-ext “end-of”

Exit the enclosing case structure by jumping behind
endcase/next-case.

contof (compilation case-sys1 of-sys – case-sys2 ; run-
time –) gforth “cont-of”

Restart the case loop by jumping to the enclosing
case.

Internally, of-sys is an orig; and case-sys is a cell and
some stack-depth information, 0 or more origs, and a
dest.

5.8.6.1 Programming Style

In order to ensure readability we recommend that you do
not create arbitrary control structures directly, but define
new control structure words for the control structure you
want and use these words in your program. For example,
instead of writing:

BEGIN

...

IF [1 CS-ROLL]

...

AGAIN THEN

we recommend defining control structure words, e.g.,

: WHILE (DEST -- ORIG DEST)

POSTPONE IF

1 CS-ROLL ; immediate

: REPEAT (orig dest --)

POSTPONE AGAIN

POSTPONE THEN ; immediate

Chapter 5: Forth Words 145

and then using these to create the control structure:

BEGIN

...

WHILE

...

REPEAT

That’s much easier to read, isn’t it? Of course, REPEAT
and WHILE are predefined, so in this example it would not
be necessary to define them.

5.8.7 Calls and returns

A definition can be called simply be writing the name of
the definition to be called. Normally a definition is invisi-
ble during its own definition. If you want to write a directly
recursive definition, you can use recursive to make the
current definition visible, or recurse to call the current
definition directly.

recursive (compilation – ; run-time –) gforth “recursive”

Make the current definition visible, enabling it to call
itself recursively.

recurse () unknown “recurse”

Alias to the current definition.

Programming style note:I prefer using recursive to
recurse, because calling the definition by name is more
descriptive (if the name is well-chosen) than the somewhat
cryptic recurse. E.g., in a quicksort implementation, it is
much better to read (and think) “now sort the partitions”
than to read “now do a recursive call”.

For mutual recursion, use Deferred words, like this:

Defer foo

Chapter 5: Forth Words 146

: bar (... -- ...)

... foo ... ;

:noname (... -- ...)

... bar ... ;

IS foo

Deferred words are discussed in more detail in
Section 5.9.10 [Deferred Words], page 173.

The current definition returns control to the calling def-
inition when the end of the definition is reached or EXIT
is encountered.

EXIT (compilation – ; run-time nest-sys –) core “EXIT”

Return to the calling definition; usually used as a way
of forcing an early return from a definition. Before EXITing
you must clean up the return stack and UNLOOP any out-
standing ?DO...LOOPs. Use ;s for a tickable word that be-
haves like exit in the absence of locals.

;s (R:w –) gforth “semis”

The primitive compiled by EXIT.

5.8.8 Exception Handling

If a word detects an error condition that it cannot handle,
it can throw an exception. In the simplest case, this will
terminate your program, and report an appropriate error.

throw (y1 .. ym nerror – y1 .. ym / z1 .. zn error) ex-
ception “throw”

If nerror is 0, drop it and continue. Otherwise, transfer
control to the next dynamically enclosing exception han-
dler, reset the stacks accordingly, and push nerror.

Chapter 5: Forth Words 147

Throw consumes a cell-sized error number on the stack.
There are some predefined error numbers in Standard
Forth (see errors.fs). In Gforth (and most other sys-
tems) you can use the iors produced by various words as
error numbers (e.g., a typical use of allocate is allocate
throw). Gforth also provides the word exception to define
your own error numbers (with decent error reporting); a
Standard Forth version of this word (but without the error
messages) is available in compat/except.fs. And finally,
you can use your own error numbers (anything outside the
range -4095..0), but won’t get nice error messages, only
numbers. For example, try:

-10 throw \ Standard defined

-267 throw \ system defined

s" my error" exception throw \ user defined

7 throw \ arbitrary number

exception (addr u – n) gforth “exception”

n is a previously unused throw value in the range (-
4095...-256). Consecutive calls to exception return con-
secutive decreasing numbers. Gforth uses the string addr
u as an error message.

A common idiom to THROW a specific error if a flag is
true is this:

(flag) 0<> errno and throw

Your program can provide exception handlers to catch
exceptions. An exception handler can be used to correct
the problem, or to clean up some data structures and just
throw the exception to the next exception handler. Note
that throw jumps to the dynamically innermost exception
handler. The system’s exception handler is outermost, and
just prints an error and restarts command-line interpreta-

Chapter 5: Forth Words 148

tion (or, in batch mode (i.e., while processing the shell
command line), leaves Gforth).

The Standard Forth way to catch exceptions is catch:

catch (... xt – ... n) exception “catch”

nothrow (–) gforth “nothrow”

Use this (or the standard sequence [’] false catch

2drop) after a catch or endtry that does not rethrow;
this ensures that the next throw will record a backtrace.

The most common use of exception handlers is to clean
up the state when an error happens. E.g.,

base @ >r hex \ actually the HEX should be inside foo to protect

\ against exceptions between HEX and CATCH

[’] foo catch (nerror|0)

r> base !

(nerror|0) throw \ pass it on

A use of catch for handling the error myerror might
look like this:

[’] foo catch

CASE

myerror OF ... (do something about it) nothrow ENDOF

dup throw \ default: pass other errors on, do nothing on non-errors

ENDCASE

Having to wrap the code into a separate word is of-
ten cumbersome, therefore Gforth provides an alternative
syntax:

TRY

code1

IFERROR

code2

THEN

Chapter 5: Forth Words 149

code3

ENDTRY

This performs code1. If code1 completes normally, ex-
ecution continues with code3. If there is an exception in
code1 or before endtry, the stacks are reset to the depth
during try, the throw value is pushed on the data stack,
and execution continues at code2, and finally falls through
to code3.

try (compilation – orig ; run-time – R:sys1) gforth “try”

Start an exception-catching region.

endtry (compilation – ; run-time R:sys1 –) gforth “endtry”

End an exception-catching region.

iferror (compilation orig1 – orig2 ; run-time –) gforth “iferror”

Starts the exception handling code (executed if there is
an exception between try and endtry). This part has to
be finished with then.

If you don’t need code2, you can write restore instead
of iferror then:

TRY

code1

RESTORE

code3

ENDTRY

The cleanup example from above in this syntax:

base @ { oldbase }

TRY

hex foo \ now the hex is placed correctly

0 \ value for throw

RESTORE

oldbase base !

Chapter 5: Forth Words 150

ENDTRY

throw

An additional advantage of this variant is that an ex-
ception between restore and endtry (e.g., from the user
pressing Ctrl-C) restarts the execution of the code after
restore, so the base will be restored under all circum-
stances.

However, you have to ensure that this code does not
cause an exception itself, otherwise the iferror/restore
code will loop. Moreover, you should also make sure that
the stack contents needed by the iferror/restore code
exist everywhere between try and endtry; in our example
this is achived by putting the data in a local before the try
(you cannot use the return stack because the exception
frame (sys1) is in the way there).

This kind of usage corresponds to Lisp’s
unwind-protect.

If you do not want this exception-restarting behaviour,
you achieve this as follows:

TRY

code1

ENDTRY-IFERROR

code2

THEN

If there is an exception in code1, then code2 is executed,
otherwise execution continues behind the then (or in a
possible else branch). This corresponds to the construct

TRY

code1

RECOVER

code2

Chapter 5: Forth Words 151

ENDTRY

in Gforth before version 0.7. So you can directly re-
place recover-using code; however, we recommend that
you check if it would not be better to use one of the other
try variants while you are at it.

To ease the transition, Gforth provides two compat-
ibility files: endtry-iferror.fs provides the try ...

endtry-iferror ... then syntax (but not iferror or
restore) for old systems; recover-endtry.fs provides
the try ... recover ... endtry syntax on new systems,
so you can use that file as a stopgap to run old programs.
Both files work on any system (they just do nothing if the
system already has the syntax it implements), so you can
unconditionally require one of these files, even if you use
a mix old and new systems.

restore (compilation orig1 – ; run-time –) gforth “restore”

Starts restoring code, that is executed if there is an
exception, and if there is no exception.

endtry-iferror (compilation orig1 – orig2 ; run-time R:sys1 –
) gforth “endtry-iferror”

End an exception-catching region while starting
exception-handling code outside that region (executed if
there is an exception between try and endtry-iferror).
This part has to be finished with then (or else...then).

Here’s the error handling example:

TRY

foo

ENDTRY-IFERROR

CASE

myerror OF ... (do something about it) nothrow ENDOF

throw \ pass other errors on

Chapter 5: Forth Words 152

ENDCASE

THEN

Programming style note:As usual, you should ensure
that the stack depth is statically known at the end: either
after the throw for passing on errors, or after the ENDTRY

(or, if you use catch, after the end of the selection con-
struct for handling the error).

There are two alternatives to throw: Abort" is condi-
tional and you can provide an error message. Abort just
produces an “Aborted” error.

The problem with these words is that exception han-
dlers cannot differentiate between different abort"s; they
just look like -2 throw to them (the error message cannot
be accessed by standard programs). Similar abort looks
like -1 throw to exception handlers.

ABORT" (compilation ’ccc"’ – ; run-time f –) core,exception-
ext “abort-quote”

If any bit of f is non-zero, perform the function of -2
throw, displaying the string ccc if there is no exception
frame on the exception stack.

abort (?? – ??) core,exception-ext “abort”

-1 throw.

For problems that are not that awful that you need
to abort execution, you can just display a warning. The
variable warnings allows to tune how many warnings you
see.

WARNING" (compilation ’ccc"’ – ; run-time f –) gforth “WARNING"”

if f is non-zero, display the string ccc as warning mes-
sage.

warnings (– addr) gforth “warnings”

Chapter 5: Forth Words 153

set warnings level to

0

turns warnings off

-1

turns normal warnings on

-2

turns beginner warnngs on

-3

pedantic warnings on

-4

turns warnings into errors (including beginner warnings)

5.9 Defining Words

Defining words are used to extend Forth by creating new
entries in the dictionary.

5.9.1 CREATE

Defining words are used to create new entries in the dic-
tionary. The simplest defining word is CREATE. CREATE is
used like this:

CREATE new-word1

CREATE is a parsing word, i.e., it takes an argument
from the input stream (new-word1 in our example). It gen-
erates a dictionary entry for new-word1. When new-word1

is executed, all that it does is leave an address on the stack.
The address represents the value of the data space pointer
(HERE) at the time that new-word1 was defined. Therefore,
CREATE is a way of associating a name with the address of
a region of memory.

Create ("name" –) core “Create”

Chapter 5: Forth Words 154

Note that Standard Forth guarantees only for create
that its body is in dictionary data space (i.e., where here,
allot etc. work, see Section 5.7.2 [Dictionary alloca-
tion], page 118). Also, in Standard Forth only created
words can be modified with does> (see Section 5.9.9 [User-
defined Defining Words], page 161). And in Standard
Forth >body can only be applied to created words.

By extending this example to reserve some memory in
data space, we end up with something like a variable. Here
are two different ways to do it:

CREATE new-word2 1 cells allot \ reserve 1 cell - initial value undefined

CREATE new-word3 4 , \ reserve 1 cell and initialise it (to 4)

The variable can be examined and modified using @

(“fetch”) and ! (“store”) like this:

new-word2 @ . \ get address, fetch from it and display

1234 new-word2 ! \ new value, get address, store to it

A similar mechanism can be used to create arrays. For
example, an 80-character text input buffer:

CREATE text-buf 80 chars allot

text-buf 0 chars + c@ \ the 1st character (offset 0)

text-buf 3 chars + c@ \ the 4th character (offset 3)

You can build arbitrarily complex data structures by
allocating appropriate areas of memory. For further dis-
cussions of this, and to learn about some Gforth tools that
make it easier, See Section 5.22 [Structures], page 284.

5.9.2 Variables

The previous section showed how a sequence of commands
could be used to generate a variable. As a final refinement,
the whole code sequence can be wrapped up in a defining

Chapter 5: Forth Words 155

word (pre-empting the subject of the next section), making
it easier to create new variables:

: myvariableX ("name" -- a-addr) CREATE 1 cells allot ;

: myvariable0 ("name" -- a-addr) CREATE 0 , ;

myvariableX foo \ variable foo starts off with an unknown value

myvariable0 joe \ whilst joe is initialised to 0

45 3 * foo ! \ set foo to 135

1234 joe ! \ set joe to 1234

3 joe +! \ increment joe by 3.. to 1237

Not surprisingly, there is no need to define myvariable,
since Forth already has a definition Variable. Standard
Forth does not guarantee that a Variable is initialised
when it is created (i.e., it may behave like myvariableX).
In contrast, Gforth’s Variable initialises the variable to 0
(i.e., it behaves exactly like myvariable0). Forth also pro-
vides 2Variable and fvariable for double and floating-
point variables, respectively – they are initialised to 0. and
0e in Gforth. If you use a Variable to store a boolean,
you can use on and off to toggle its state.

Variable ("name" –) core “Variable”

2Variable ("name" –) double “two-variable”

fvariable ("name" –) float “f-variable”

The defining word User behaves in the same way as
Variable. The difference is that it reserves space in user
(data) space rather than normal data space. In a Forth
system that has a multi-tasker, each task has its own set
of user variables.

User ("name" –) gforth “User”

Chapter 5: Forth Words 156

5.9.3 Constants

Constant allows you to declare a fixed value and refer to
it by name. For example:

12 Constant INCHES-PER-FOOT

3E+08 fconstant SPEED-O-LIGHT

A Variable can be both read and written, so its run-
time behaviour is to supply an address through which its
current value can be manipulated. In contrast, the value of
a Constant cannot be changed once it has been declared6

so it’s not necessary to supply the address – it is more
efficient to return the value of the constant directly. That’s
exactly what happens; the run-time effect of a constant is
to put its value on the top of the stack (You can find
one way of implementing Constant in Section 5.9.9 [User-
defined Defining Words], page 161).

Forth also provides 2Constant and fconstant for
defining double and floating-point constants, respectively.

Constant (w "name" –) core “Constant”

Define a constant name with value w.

name execution: – w

2Constant (w1 w2 "name" –) double “two-constant”

fconstant (r "name" –) float “f-constant”

Constants in Forth behave differently from their equiva-
lents in other programming languages. In other languages,
a constant (such as an EQU in assembler or a #define in
C) only exists at compile-time; in the executable program
the constant has been translated into an absolute number

6 Well, often it can be – but not in a Standard, portable way. It’s
safer to use a Value (read on).

Chapter 5: Forth Words 157

and, unless you are using a symbolic debugger, it’s impos-
sible to know what abstract thing that number represents.
In Forth a constant has an entry in the header space and
remains there after the code that uses it has been defined.
In fact, it must remain in the dictionary since it has run-
time duties to perform. For example:

12 Constant INCHES-PER-FOOT

: FEET-TO-INCHES (n1 -- n2) INCHES-PER-FOOT * ;

When FEET-TO-INCHES is executed, it will in turn ex-
ecute the xt associated with the constant INCHES-PER-

FOOT. If you use see to decompile the definition of
FEET-TO-INCHES, you can see that it makes a call to
INCHES-PER-FOOT. Some Forth compilers attempt to op-
timise constants by in-lining them where they are used.
You can force Gforth to in-line a constant like this:

: FEET-TO-INCHES (n1 -- n2) [INCHES-PER-FOOT] LITERAL * ;

If you use see to decompile this version of FEET-TO-
INCHES, you can see that INCHES-PER-FOOT is no
longer present. To understand how this works, read
Section 5.13.3 [Interpret/Compile states], page 203, and
Section 5.12.1 [Literals], page 186.

In-lining constants in this way might improve execu-
tion time fractionally, and can ensure that a constant is
now only referenced at compile-time. However, the defini-
tion of the constant still remains in the dictionary. Some
Forth compilers provide a mechanism for controlling a sec-
ond dictionary for holding transient words such that this
second dictionary can be deleted later in order to recover
memory space. However, there is no standard way of doing
this.

Chapter 5: Forth Words 158

5.9.4 Values

A Value behaves like a Constant, but it can be changed.
TO is a parsing word that changes a Values. In Gforth (not
in Standard Forth) you can access (and change) a value

also with >body.

Here are some examples:

12 Value APPLES \ Define APPLES with an initial value of 12

34 TO APPLES \ Change the value of APPLES. TO is a parsing word

1 ’ APPLES >body +! \ Increment APPLES. Non-standard usage.

APPLES \ puts 35 on the top of the stack.

Value (w "name" –) core-ext “Value”

TO (value "name" –) core-ext “TO”

changes the value of name to value

+TO (value "name" –) gforth “+TO”

increments the value of name by value

addr ("name" – addr) gforth “addr”

provides the address addr of the value stored in name

5.9.5 Colon Definitions

: name (... -- ...)

word1 word2 word3 ;

Creates a word called name that, upon execution, executes
word1 word2 word3. name is a (colon) definition.

The explanation above is somewhat superficial. For
simple examples of colon definitions see Section 4.3 [Your
first definition], page 78. For an in-depth discussion of
some of the issues involved, See Section 5.10 [Interpreta-
tion and Compilation Semantics], page 177.

: ("name" – colon-sys) core “colon”

; (compilation colon-sys – ; run-time nest-sys) core “semicolon”

Chapter 5: Forth Words 159

5.9.6 Anonymous Definitions

Sometimes you want to define an anonymous word; a word
without a name. You can do this with:

:noname (– xt colon-sys) core-ext “colon-no-name”

This leaves the execution token for the word on the
stack after the closing ;. Here’s an example in which a
deferred word is initialised with an xt from an anonymous
colon definition:

Defer deferred

:noname (... -- ...)

... ;

IS deferred

Gforth provides an alternative way of doing this, using two
separate words:

noname (–) gforth “noname”

The next defined word will be anonymous. The defining
word will leave the input stream alone. The xt of the
defined word will be given by latestxt.

latestxt (– xt) gforth “latestxt”

xt is the execution token of the last word defined.

The previous example can be rewritten using noname and
latestxt:

Defer deferred

noname : (... -- ...)

... ;

latestxt IS deferred

noname works with any defining word, not just :.

latestxt also works when the last word was not de-
fined as noname. It does not work for combined words,

Chapter 5: Forth Words 160

though. It also has the useful property that is is valid as
soon as the header for a definition has been built. Thus:

latestxt . : foo [latestxt .] ; ’ foo .

prints 3 numbers; the last two are the same.

5.9.7 Quotations

A quotation is an anonymous colon definition inside an-
other colon definition. Quotations are useful when dealing
with words that consume an execution token, like catch or
outfile-execute. E.g. consider the following example of
using outfile-execute (see Section 5.17.3 [Redirection],
page 225):

: some-warning (n --)

cr ." warning# " . ;

: print-some-warning (n --)

[’] some-warning stderr outfile-execute ;

Here we defined some-warning as a helper word whose
xt we could pass to outfile-execute. Instead, we can use
a quotation to define such a word anonymously inside
print-some-warning:

: print-some-warning (n --)

[: cr ." warning# " . ;] stderr outfile-execute ;

The quotation is bouded by [: and ;]. It produces an
execution token at run-time.

[: (compile-time: – quotation-sys flag colon-sys) gforth “bracket-
colon”

Starts a quotation

;] (compile-time: quotation-sys – ; run-time: – xt) gforth “semi-
bracket”

ends a quotation

Chapter 5: Forth Words 161

5.9.8 Supplying the name of a defined
word

By default, a defining word takes the name for the de-
fined word from the input stream. Sometimes you want to
supply the name from a string. You can do this with:

nextname (c-addr u –) gforth “nextname”

The next defined word will have the name c-addr u; the
defining word will leave the input stream alone.

For example:

s" foo" nextname create

is equivalent to:

create foo

nextname works with any defining word.

5.9.9 User-defined Defining Words

You can create a new defining word by wrapping defining-
time code around an existing defining word and putting
the sequence in a colon definition.

For example, suppose that you have a word stats that
gathers statistics about colon definitions given the xt of
the definition, and you want every colon definition in your
application to make a call to stats. You can define and
use a new version of : like this:

: stats (xt --) DUP ." (Gathering statistics for " . .")"

... ; \ other code

: my: : latestxt postpone literal [’] stats compile, ;

my: foo + - ;

Chapter 5: Forth Words 162

When foo is defined using my: these steps occur:

• my: is executed.

• The : within the definition (the one between my: and
latestxt) is executed, and does just what it always
does; it parses the input stream for a name, builds a
dictionary header for the name foo and switches state
from interpret to compile.

• The word latestxt is executed. It puts the xt for the
word that is being defined – foo – onto the stack.

• The code that was produced by postpone literal is
executed; this causes the value on the stack to be com-
piled as a literal in the code area of foo.

• The code [’] stats compiles a literal into the defini-
tion of my:. When compile, is executed, that literal
– the execution token for stats – is layed down in the
code area of foo , following the literal7.

• At this point, the execution of my: is complete, and
control returns to the text interpreter. The text in-
terpreter is in compile state, so subsequent text + - is
compiled into the definition of foo and the ; terminates
the definition as always.

You can use see to decompile a word that was defined
using my: and see how it is different from a normal : def-
inition. For example:

: bar + - ; \ like foo but using : rather than my:

see bar

7 Strictly speaking, the mechanism that compile, uses to con-
vert an xt into something in the code area is implementation-
dependent. A threaded implementation might spit out the exe-
cution token directly whilst another implementation might spit
out a native code sequence.

Chapter 5: Forth Words 163

: bar

+ - ;

see foo

: foo

107645672 stats + - ;

\ use ’ foo . to show that 107645672 is the xt for foo

You can use techniques like this to make new defining
words in terms of any existing defining word.

If you want the words defined with your defining words
to behave differently from words defined with standard
defining words, you can write your defining word like this:

: def-word ("name" --)

CREATE code1

DOES> (... -- ...)

code2 ;

def-word name

This fragment defines a defining word def-word and
then executes it. When def-word executes, it CREATEs a
new word, name, and executes the code code1. The code
code2 is not executed at this time. The word name is
sometimes called a child of def-word.

When you execute name, the address of the body of
name is put on the data stack and code2 is executed (the
address of the body of name is the address HERE returns
immediately after the CREATE, i.e., the address a created
word returns by default).

You can use def-word to define a set of child words
that behave similarly; they all have a common run-time
behaviour determined by code2. Typically, the code1 se-

Chapter 5: Forth Words 164

quence builds a data area in the body of the child word.
The structure of the data is common to all children of
def-word, but the data values are specific – and private
– to each child word. When a child word is executed, the
address of its private data area is passed as a parameter
on TOS to be used and manipulated8 by code2.

The two fragments of code that make up the defining
words act (are executed) at two completely separate times:

• At define time, the defining word executes code1 to
generate a child word

• At child execution time, when a child word is invoked,
code2 is executed, using parameters (data) that are pri-
vate and specific to the child word.

Another way of understanding the behaviour of
def-word and name is to say that, if you make the
following definitions:

: def-word1 ("name" --)

CREATE code1 ;

: action1 (... -- ...)

code2 ;

def-word1 name1

Then using name1 action1 is equivalent to using name.

The classic example is that you can define CONSTANT in
this way:

: CONSTANT (w "name" --)

CREATE ,

DOES> (-- w)

8 It is legitimate both to read and write to this data area.

Chapter 5: Forth Words 165

@ ;

When you create a constant with 5 CONSTANT five, a
set of define-time actions take place; first a new word five

is created, then the value 5 is laid down in the body of five
with ,. When five is executed, the address of the body
is put on the stack, and @ retrieves the value 5. The word
five has no code of its own; it simply contains a data
field and a pointer to the code that follows DOES> in its
defining word. That makes words created in this way very
compact.

The final example in this section is intended to remind
you that space reserved in CREATEd words is data space
and therefore can be both read and written by a Standard
program9:

: foo ("name" --)

CREATE -1 ,

DOES> (--)

@ . ;

foo first-word

foo second-word

123 ’ first-word >BODY !

If first-word had been a CREATEd word, we could sim-
ply have executed it to get the address of its data field.
However, since it was defined to have DOES> actions, its
execution semantics are to perform those DOES> actions.
To get the address of its data field it’s necessary to use ’

9 Exercise: use this example as a starting point for your own im-
plementation of Value and TO – if you get stuck, investigate the
behaviour of ’ and [’].

Chapter 5: Forth Words 166

to get its xt, then >BODY to translate the xt into the ad-
dress of the data field. When you execute first-word, it
will display 123. When you execute second-word it will
display -1.

In the examples above the stack comment after the
DOES> specifies the stack effect of the defined words, not
the stack effect of the following code (the following code
expects the address of the body on the top of stack, which
is not reflected in the stack comment). This is the conven-
tion that I use and recommend (it clashes a bit with using
locals declarations for stack effect specification, though).

5.9.9.1 Applications of CREATE..DOES>

You may wonder how to use this feature. Here are some
usage patterns:

When you see a sequence of code occurring several
times, and you can identify a meaning, you will factor it
out as a colon definition. When you see similar colon def-
initions, you can factor them using CREATE..DOES>. E.g.,
an assembler usually defines several words that look very
similar:

: ori, (reg-target reg-source n --)

0 asm-reg-reg-imm ;

: andi, (reg-target reg-source n --)

1 asm-reg-reg-imm ;

This could be factored with:

: reg-reg-imm (op-code --)

CREATE ,

DOES> (reg-target reg-source n --)

@ asm-reg-reg-imm ;

Chapter 5: Forth Words 167

0 reg-reg-imm ori,

1 reg-reg-imm andi,

Another view of CREATE..DOES> is to consider it as a
crude way to supply a part of the parameters for a word
(known as currying in the functional language commu-
nity). E.g., + needs two parameters. Creating versions of
+ with one parameter fixed can be done like this:

: curry+ (n1 "name" --)

CREATE ,

DOES> (n2 -- n1+n2)

@ + ;

3 curry+ 3+

-2 curry+ 2-

5.9.9.2 The gory details of CREATE..DOES>

DOES> (compilation colon-sys1 – colon-sys2) unknown “DOES>”

This means that you need not use CREATE and DOES>

in the same definition; you can put the DOES>-part in a
separate definition. This allows us to, e.g., select among
different DOES>-parts:

: does1

DOES> (... -- ...)

... ;

: does2

DOES> (... -- ...)

... ;

: def-word (... -- ...)

create ...

IF

Chapter 5: Forth Words 168

does1

ELSE

does2

ENDIF ;

In this example, the selection of whether to use does1

or does2 is made at definition-time; at the time that the
child word is CREATEd.

In a standard program you can apply a DOES>-part only
if the last word was defined with CREATE. In Gforth, the
DOES>-part will override the behaviour of the last word
defined in any case. In a standard program, you can use
DOES> only in a colon definition. In Gforth, you can also
use it in interpretation state, in a kind of one-shot mode;
for example:

CREATE name (... -- ...)

initialization

DOES>

code ;

is equivalent to the standard:

:noname

DOES>

code ;

CREATE name EXECUTE (... -- ...)

initialization

>body (xt – a addr) core “to-body”

Get the address of the body of the word represented by
xt (the address of the word’s data field).

Chapter 5: Forth Words 169

5.9.9.3 Advanced does> usage example

The MIPS disassembler (arch/mips/disasm.fs) contains
many words for disassembling instructions, that follow a
very repetetive scheme:

:noname disasm-operands s" inst-name" type ;

entry-num cells table + !

Of course, this inspires the idea to factor out the com-
monalities to allow a definition like

disasm-operands entry-num table define-inst inst-

name

The parameters disasm-operands and table are usually
correlated. Moreover, before I wrote the disassembler,
there already existed code that defines instructions like
this:

entry-num inst-format inst-name

This code comes from the assembler and resides in
arch/mips/insts.fs.

So I had to define the inst-format words that performed
the scheme above when executed. At first I chose to use
run-time code-generation:

: inst-format (entry-num "name" -- ; compiled code: addr w --)

:noname Postpone disasm-operands

name Postpone sliteral Postpone type Postpone ;

swap cells table + ! ;

Note that this supplies the other two parameters of the
scheme above.

An alternative would have been to write this using
create/does>:

: inst-format (entry-num "name" --)

here name string, (entry-num c-addr) \ parse and save "name"

Chapter 5: Forth Words 170

noname create , (entry-num)

latestxt swap cells table + !

does> (addr w --)

\ disassemble instruction w at addr

@ >r

disasm-operands

r> count type ;

Somehow the first solution is simpler, mainly because
it’s simpler to shift a string from definition-time to use-
time with sliteral than with string, and friends.

I wrote a lot of words following this scheme and soon
thought about factoring out the commonalities among
them. Note that this uses a two-level defining word, i.e.,
a word that defines ordinary defining words.

This time a solution involving postpone and friends
seemed more difficult (try it as an exercise), so I decided
to use a create/does> word; since I was already at it,
I also used create/does> for the lower level (try using
postpone etc. as an exercise), resulting in the following
definition:

: define-format (disasm-xt table-xt --)

\ define an instruction format that uses disasm-xt for

\ disassembling and enters the defined instructions into table

\ table-xt

create 2,

does> (u "inst" --)

\ defines an anonymous word for disassembling instruction inst,

\ and enters it as u-th entry into table-xt

2@ swap here name string, (u table-xt disasm-xt c-addr) \ remember string

noname create 2, \ define anonymous word

execute latestxt swap ! \ enter xt of defined word into table-xt

does> (addr w --)

Chapter 5: Forth Words 171

\ disassemble instruction w at addr

2@ >r (addr w disasm-xt R: c-addr)

execute (R: c-addr) \ disassemble operands

r> count type ; \ print name

Note that the tables here (in contrast to above) do the
cells + by themselves (that’s why you have to pass an
xt). This word is used in the following way:

’ disasm-operands ’ table define-format inst-format

As shown above, the defined instruction format is then
used like this:

entry-num inst-format inst-name

In terms of currying, this kind of two-level defining
word provides the parameters in three stages: first disasm-
operands and table, then entry-num and inst-name, finally
addr w, i.e., the instruction to be disassembled.

Of course this did not quite fit all the instruction format
names used in insts.fs, so I had to define a few wrappers
that conditioned the parameters into the right form.

If you have trouble following this section, don’t worry.
First, this is involved and takes time (and probably some
playing around) to understand; second, this is the first
two-level create/does> word I have written in seventeen
years of Forth; and if I did not have insts.fs to start
with, I may well have elected to use just a one-level defining
word (with some repeating of parameters when using the
defining word). So it is not necessary to understand this,
but it may improve your understanding of Forth.

Chapter 5: Forth Words 172

5.9.9.4 Const-does>

A frequent use of create...does> is for transferring some
values from definition-time to run-time. Gforth supports
this use with

const-does> (run-time: w*uw r*ur uw ur "name" –
) gforth “const-does>”

Defines name and returns.

name execution: pushes w*uw r*ur, then performs the
code following the const-does>.

A typical use of this word is:

: curry+ (n1 "name" --)

1 0 CONST-DOES> (n2 -- n1+n2)

+ ;

3 curry+ 3+

Here the 1 0 means that 1 cell and 0 floats are trans-
ferred from definition to run-time.

The advantages of using const-does> are:

• You don’t have to deal with storing and retrieving the
values, i.e., your program becomes more writable and
readable.

• When using does>, you have to introduce a @ that can-
not be optimized away (because you could change the
data using >body...!); const-does> avoids this prob-
lem.

A Standard Forth implementation of const-does> is
available in compat/const-does.fs.

Chapter 5: Forth Words 173

5.9.10 Deferred Words

The defining word Defer allows you to define a word by
name without defining its behaviour; the definition of its
behaviour is deferred. Here are two situation where this
can be useful:

• Where you want to allow the behaviour of a word to be
altered later, and for all precompiled references to the
word to change when its behaviour is changed.

• For mutual recursion; See Section 5.8.7 [Calls and re-
turns], page 145.

In the following example, foo always invokes the ver-
sion of greet that prints “Good morning” whilst bar al-
ways invokes the version that prints “Hello”. There is
no way of getting foo to use the later version without re-
ordering the source code and recompiling it.

: greet ." Good morning" ;

: foo ... greet ... ;

: greet ." Hello" ;

: bar ... greet ... ;

This problem can be solved by defining greet as a
Deferred word. The behaviour of a Deferred word can
be defined and redefined at any time by using IS to as-
sociate the xt of a previously-defined word with it. The
previous example becomes:

Defer greet (--)

: foo ... greet ... ;

: bar ... greet ... ;

: greet1 (--) ." Good morning" ;

: greet2 (--) ." Hello" ;

’ greet2 IS greet \ make greet behave like greet2

Chapter 5: Forth Words 174

Programming style note:You should write a stack com-
ment for every deferred word, and put only XTs into de-
ferred words that conform to this stack effect. Otherwise
it’s too difficult to use the deferred word.

A deferred word can be used to improve the statistics-
gathering example from Section 5.9.9 [User-defined Defin-
ing Words], page 161; rather than edit the application’s
source code to change every : to a my:, do this:

: real: : ; \ retain access to the original

defer : \ redefine as a deferred word

’ my: IS : \ use special version of :

\

\ load application here

\

’ real: IS : \ go back to the original

One thing to note is that IS has special compilation
semantics, such that it parses the name at compile time
(like TO):

: set-greet (xt --)

IS greet ;

’ greet1 set-greet

In situations where IS does not fit, use defer! instead.

A deferred word can only inherit execution semantics
from the xt (because that is all that an xt can represent
– for more discussion of this see Section 5.11 [Tokens for
Words], page 181); by default it will have default interpre-
tation and compilation semantics deriving from this exe-
cution semantics. However, you can change the interpre-
tation and compilation semantics of the deferred word in
the usual ways:

Chapter 5: Forth Words 175

: bar ; immediate

Defer fred immediate

Defer jim

’ bar IS jim \ jim has default semantics

’ bar IS fred \ fred is immediate

Defer ("name" –) gforth “Defer”

Define a deferred word name; its execution semantics
can be set with defer! or is (and they have to, before
first executing name.

defer! (xt xt-deferred –) gforth “defer-store”

IS (value "name" –) core-ext “IS”

changes the deferred word name to execute value

defer@ (xt-deferred – xt) gforth “defer-fetch”

xt represents the word currently associated with the
deferred word xt-deferred.

action-of (interpretation "name" – xt; compilation "name" –
; run-time – xt) core-ext “action-of”

Xt is the XT that is currently assigned to name.

defers (compilation "name" – ; run-time ... – ...) gforth “defers”

Compiles the present contents of the deferred word
name into the current definition. I.e., this produces static
binding as if name was not deferred.

Definitions of these words (except defers) in Standard
Forth are provided in compat/defer.fs.

5.9.11 Forward

The defining word Forward in forward.fs allows you to
create forward references, which are resolved automati-
cally, and do not incur additional costs like the indirection

Chapter 5: Forth Words 176

of Defer. However, these forward definitions only work for
colon definitions.

doc-forward doc-.unresolved

5.9.12 Aliases

The defining word Alias allows you to define a word by
name that has the same behaviour as some other word.
Here are two situation where this can be useful:

• When you want access to a word’s definition from a
different word list (for an example of this, see the defi-
nition of the Root word list in the Gforth source).

• When you want to create a synonym; a definition that
can be known by either of two names (for example, THEN
and ENDIF are aliases).

Like deferred words, an alias has default compilation
and interpretation semantics at the beginning (not the
modifications of the other word), but you can change them
in the usual ways (immediate, compile-only). For exam-
ple:

: foo ... ; immediate

’ foo Alias bar \ bar is not an immediate word

’ foo Alias fooby immediate \ fooby is an immediate word

Words that are aliases have the same xt, different head-
ers in the dictionary, and consequently different name to-
kens (see Section 5.11 [Tokens for Words], page 181) and
possibly different immediate flags. An alias can only have
default or immediate compilation semantics; you can de-
fine aliases for combined words with interpret/compile:

– see Section 5.10.1 [Combined words], page 178.

Alias (xt "name" –) gforth “Alias”

Chapter 5: Forth Words 177

5.10 Interpretation and Compilation
Semantics

The interpretation semantics of a (named) word are what
the text interpreter does when it encounters the word in
interpret state. It also appears in some other contexts,
e.g., the execution token returned by ’ word identifies the
interpretation semantics of word (in other words, ’ word

execute is equivalent to interpret-state text interpretation
of word).

The compilation semantics of a (named) word are what
the text interpreter does when it encounters the word
in compile state. It also appears in other contexts, e.g,
POSTPONE word compiles10 the compilation semantics of
word.

The standard also talks about execution semantics.
They are used only for defining the interpretation and
compilation semantics of many words. By default, the
interpretation semantics of a word are to execute its exe-
cution semantics, and the compilation semantics of a word
are to compile, its execution semantics.11

Unnamed words (see Section 5.9.6 [Anonymous Defini-
tions], page 159) cannot be encountered by the text inter-
preter, ticked, or postponed, so they have no interpreta-
tion or compilation semantics. Their behaviour is repre-
sented by their XT (see Section 5.11 [Tokens for Words],
page 181), and we call it execution semantics, too.

10 In standard terminology, “appends to the current definition”.
11 In standard terminology: The default interpretation semantics

are its execution semantics; the default compilation semantics
are to append its execution semantics to the execution semantics
of the current definition.

Chapter 5: Forth Words 178

You can change the semantics of the most-recently de-
fined word:

immediate (–) core “immediate”

Make the compilation semantics of a word be to
execute the execution semantics.

compile-only (–) gforth “compile-only”

Mark the last definition as compile-only; as a result,
the text interpreter and ’ will warn when they encounter
such a word.

restrict (–) gforth “restrict”

A synonym for compile-only

By convention, words with non-default compilation se-
mantics (e.g., immediate words) often have names sur-
rounded with brackets (e.g., [’], see Section 5.11.1 [Exe-
cution token], page 181).

Note that ticking (’) a compile-only word gives a warn-
ing (“<word> is compile-only”).

5.10.1 Combined Words

Gforth allows you to define combined words – words that
have an arbitrary combination of interpretation and com-
pilation semantics.

interpret/compile: (interp-xt comp-xt "name" –) gforth “interpret/compile:”

This feature was introduced for implementing TO and
S". I recommend that you do not define such words, as
cute as they may be: they make it hard to get at both parts
of the word in some contexts. E.g., assume you want to
get an execution token for the compilation part. Instead,
define two words, one that embodies the interpretation
part, and one that embodies the compilation part. Once

Chapter 5: Forth Words 179

you have done that, you can define a combined word with
interpret/compile: for the convenience of your users.

You might try to use this feature to provide an optimiz-
ing implementation of the default compilation semantics of
a word. For example, by defining:

:noname

foo bar ;

:noname

POSTPONE foo POSTPONE bar ;

interpret/compile: opti-foobar

as an optimizing version of:

: foobar

foo bar ;

Unfortunately, this does not work correctly with
[compile], because [compile] assumes that the compi-
lation semantics of all interpret/compile: words are
non-default. I.e., [compile] opti-foobar would compile
compilation semantics, whereas [compile] foobar would
compile interpretation semantics.

Some people try to use state-smart words to emulate
the feature provided by interpret/compile: (words are
state-smart if they check STATE during execution). E.g.,
they would try to code foobar like this:

: foobar

STATE @

IF (compilation state)

POSTPONE foo POSTPONE bar

ELSE

foo bar

ENDIF ; immediate

Chapter 5: Forth Words 180

Although this works if foobar is only processed by the
text interpreter, it does not work in other contexts (like ’
or POSTPONE). E.g., ’ foobar will produce an execution
token for a state-smart word, not for the interpretation se-
mantics of the original foobar; when you execute this exe-
cution token (directly with EXECUTE or indirectly through
COMPILE,) in compile state, the result will not be what you
expected (i.e., it will not perform foo bar). State-smart
words are a bad idea. Simply don’t write them12!

It is also possible to write defining words that define
words with arbitrary combinations of interpretation and
compilation semantics. In general, they look like this:

: def-word

create-interpret/compile

code1

interpretation>

code2

<interpretation

compilation>

code3

<compilation ;

For a word defined with def-word, the interpretation
semantics are to push the address of the body of word and
perform code2, and the compilation semantics are to push
the address of the body of word and perform code3. E.g.,
constant can also be defined like this (except that the de-
fined constants don’t behave correctly when [compile]d):

: constant (n "name" --)

12 For a more detailed discussion of this topic, see M. Anton
Ertl, State-smartness—Why it is Evil and How to Exorcise it
(http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz),
EuroForth ’98.

http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz

Chapter 5: Forth Words 181

create-interpret/compile

,

interpretation> (-- n)

@

<interpretation

compilation> (compilation. -- ; run-time. -- n)

@ postpone literal

<compilation ;

doc-create-interpret/compile doc-interpretation> doc-
<interpretation doc-compilation> doc-<compilation

Words defined with interpret/compile: and
create-interpret/compile have an extended header
structure that differs from other words; however, unless
you try to access them with plain address arithmetic, you
should not notice this. Words for accessing the header
structure usually know how to deal with this; e.g., ’ word
>body also gives you the body of a word created with
create-interpret/compile.

5.11 Tokens for Words

This section describes the creation and use of tokens that
represent words.

5.11.1 Execution token

An execution token (XT) represents some behaviour of a
word. You can use execute to invoke this behaviour.

You can use ’ to get an execution token that represents
the interpretation semantics of a named word:

5 ’ . (n xt)

execute () \ execute the xt (i.e., ".")

’ ("name" – xt) core “tick”

Chapter 5: Forth Words 182

xt represents name’s interpretation semantics. Perform
-14 throw if the word has no interpretation semantics.

’ parses at run-time; there is also a word [’] that
parses when it is compiled, and compiles the resulting XT:

: foo [’] . execute ;

5 foo

: bar ’ execute ; \ by contrast,

5 bar . \ ’ parses "." when bar executes

[’] (compilation. "name" – ; run-time. – xt) core “bracket-
tick”

xt represents name’s interpretation semantics. Perform
-14 throw if the word has no interpretation semantics.

If you want the execution token of word, write [’]

word in compiled code and ’ word in interpreted code.
Gforth’s ’ and [’] warns when you use them on compile-
only words, because such usage may be non-portable be-
tween different Forth systems.

You can avoid that warning as well as the portability
problems by defining an immediate variant of the word,
e.g.:

: if postpone if ; immediate

: test [’ if execute] ." test" then ;

The resulting execution token performs the compilation
semantics of if when executed.

Another way to get an XT is :noname or latestxt

(see Section 5.9.6 [Anonymous Definitions], page 159). For
anonymous words this gives an xt for the only behaviour
the word has (the execution semantics). For named words,
latestxt produces an XT for the same behaviour it would
produce if the word was defined anonymously.

:noname ." hello" ;

Chapter 5: Forth Words 183

execute

An XT occupies one cell and can be manipulated like
any other cell.

In Standard Forth the XT is just an abstract data type
(i.e., defined by the operations that produce or consume
it). For old hands: In Gforth, the XT is implemented as a
code field address (CFA).

execute (xt –) core “execute”

Perform the semantics represented by the execution to-
ken, xt.

perform (a-addr –) gforth “perform”

@ execute.

5.11.2 Compilation token

Gforth represents the compilation semantics of a named
word by a compilation token consisting of two cells: w
xt. The top cell xt is an execution token. The compila-
tion semantics represented by the compilation token can be
performed with execute, which consumes the whole com-
pilation token, with an additional stack effect determined
by the represented compilation semantics.

At present, the w part of a compilation token is an
execution token, and the xt part represents either execute
or compile,13. However, don’t rely on that knowledge,
unless necessary; future versions of Gforth may introduce
unusual compilation tokens (e.g., a compilation token that
represents the compilation semantics of a literal).

13 Depending upon the compilation semantics of the word. If the
word has default compilation semantics, the xt will represent
compile,. Otherwise (e.g., for immediate words), the xt will
represent execute.

Chapter 5: Forth Words 184

You can perform the compilation semantics represented
by the compilation token with execute. You can compile
the compilation semantics with postpone,. I.e., COMP’

word postpone, is equivalent to postpone word.

[COMP’] (compilation "name" – ; run-time – w xt) gforth “bracket-
comp-tick”

Compilation token w xt represents name’s compilation
semantics.

COMP’ ("name" – w xt) gforth “comp-tick”

Compilation token w xt represents name’s compilation
semantics.

postpone, (w xt –) gforth “postpone-comma”

Compile the compilation semantics represented by the
compilation token w xt.

5.11.3 Name token

Gforth represents named words by the name token, (nt).
Name token is an abstract data type that occurs as argu-
ment or result of the words below.

The closest thing to the nt in older Forth systems is
the name field address (NFA), but there are significant
differences: in older Forth systems each word had a unique
NFA, LFA, CFA and PFA (in this order, or LFA, NFA,
CFA, PFA) and there were words for getting from one to
the next. In contrast, in Gforth 0. . .n nts correspond to
one xt; there is a link field in the structure identified by
the name token, but searching usually uses a hash table
external to these structures; the name in Gforth has a cell-
wide count-and-flags field, and the nt is not implemented
as the address of that count field.

find-name (c-addr u – nt | 0) gforth “find-name”

Chapter 5: Forth Words 185

Find the name c-addr u in the current search order.
Return its nt, if found, otherwise 0.

find-name-in (c-addr u wid – nt | 0) unknown “find-
name-in”

search the word list identified by wid for the definition
named by the string at c-addr u. Return its nt, if found,
otherwise 0.

latest (– nt) gforth “latest”

nt is the name token of the last word defined; it is 0 if
the last word has no name.

>name (xt – nt|0) gforth “to-name”

The primary name token nt of the word represented by
xt. Returns 0 if xt is not an xt (using a heuristic check that
has a small chance of misidentifying a non-xt as xt), or if
the primary nt is of an unnamed word. As of Gforth 1.0,
every xt has a primary nt, but other named words may
have the same interpretation sematics xt.

name>interpret (nt – xt|0) unknown “name>interpret”

xt represents the interpretation semantics nt ; returns 0
if nt has no interpretation semantics

name>compile (nt – w xt) unknown “name>compile”

w xt is the compilation token for the word nt.

name>int (nt – xt) gforth “name-to-int”

xt represents the interpretation semantics of the word
nt.

name?int (nt – xt) gforth-obsolete “name-question-int”

Like name>int, but warns when encountering a word
marked compile-only

name>comp (nt – w xt) gforth “name-to-comp”

Chapter 5: Forth Words 186

w xt is the compilation token for the word nt.

name>string (nt – addr u) gforth “name-to-string”

addr count is the name of the word represented by nt.

id. (nt –) gforth “i-d-dot”

Print the name of the word represented by nt.

.name (nt –) gforth-obsolete “dot-name”

Gforth <=0.5.0 name for id..

.id (nt –) F83 “dot-i-d”

F83 name for id..

5.12 Compiling words

In contrast to most other languages, Forth has no strict
boundary between compilation and run-time. E.g., you
can run arbitrary code between defining words (or for
computing data used by defining words like constant).
Moreover, Immediate (see Section 5.10 [Interpretation and
Compilation Semantics], page 177, and [...] (see below)
allow running arbitrary code while compiling a colon def-
inition (exception: you must not allot dictionary space).

5.12.1 Literals

The simplest and most frequent example is to compute a
literal during compilation. E.g., the following definition
prints an array of strings, one string per line:

: .strings (addr u --) \ gforth

2* cells bounds U+DO

cr i 2@ type

2 cells +LOOP ;

With a simple-minded compiler like Gforth’s, this com-
putes 2 cells on every loop iteration. You can compute

Chapter 5: Forth Words 187

this value once and for all at compile time and compile it
into the definition like this:

: .strings (addr u --) \ gforth

2* cells bounds U+DO

cr i 2@ type

[2 cells] literal +LOOP ;

[switches the text interpreter to interpret state (you
will get an ok prompt if you type this example interac-
tively and insert a newline between [and]), so it performs
the interpretation semantics of 2 cells; this computes a
number.] switches the text interpreter back into compile
state. It then performs Literal’s compilation semantics,
which are to compile this number into the current word.
You can decompile the word with see .strings to see the
effect on the compiled code.

You can also optimize the 2* cells into [2 cells]

literal * in this way.

[(–) core “left-bracket”

Enter interpretation state. Immediate word.

] (–) core “right-bracket”

Enter compilation state.

Literal (compilation n – ; run-time – n) core “Literal”

Compilation semantics: compile the run-time seman-
tics.
Run-time Semantics: push n.
Interpretation semantics: undefined.

]L (compilation: n – ; run-time: – n) gforth “]L”

equivalent to] literal

There are also words for compiling other data types
than single cells as literals:

Chapter 5: Forth Words 188

2Literal (compilation w1 w2 – ; run-time – w1 w2) dou-
ble “two-literal”

Compile appropriate code such that, at run-time, w1
w2 are placed on the stack. Interpretation semantics are
undefined.

FLiteral (compilation r – ; run-time – r) float “f-literal”

Compile appropriate code such that, at run-time, r is
placed on the (floating-point) stack. Interpretation seman-
tics are undefined.

SLiteral (Compilation c-addr1 u ; run-time – c-addr2 u) string “SLiteral”

Compilation: compile the string specified by c-addr1,
u into the current definition. Run-time: return c-addr2 u
describing the address and length of the string.

You might be tempted to pass data from outside a colon
definition to the inside on the data stack. This does not
work, because : puhes a colon-sys, making stuff below un-
accessible. E.g., this does not work:

5 : foo literal ; \ error: "unstructured"

Instead, you have to pass the value in some other way,
e.g., through a variable:

variable temp

5 temp !

: foo [temp @] literal ;

5.12.2 Macros

Literal and friends compile data values into the current
definition. You can also write words that compile other
words into the current definition. E.g.,

: compile-+ (--) \ compiled code: (n1 n2 -- n)

POSTPONE + ;

Chapter 5: Forth Words 189

: foo (n1 n2 -- n)

[compile-+] ;

1 2 foo .

This is equivalent to : foo + ; (see foo to check this).
What happens in this example? Postpone compiles the
compilation semantics of + into compile-+; later the text
interpreter executes compile-+ and thus the compilation
semantics of +, which compile (the execution semantics of)
+ into foo.14

postpone ("name" –) core “postpone”

Compiles the compilation semantics of name.

Compiling words like compile-+ are usually immediate
(or similar) so you do not have to switch to interpret state
to execute them; modifying the last example accordingly
produces:

: [compile-+] (compilation: --; interpretation: --)

\ compiled code: (n1 n2 -- n)

POSTPONE + ; immediate

: foo (n1 n2 -- n)

[compile-+] ;

1 2 foo .

You will occassionally find the need to POSTPONE
several words; putting POSTPONE before each such word
is cumbersome, so Gforth provides a more convenient syn-
tax:]] ... [[. This allows us to write [compile-+]

as:

14 A recent RFI answer requires that compiling words should only
be executed in compile state, so this example is not guaranteed
to work on all standard systems, but on any decent system it will
work.

Chapter 5: Forth Words 190

: [compile-+] (compilation: --; interpretation: --)

]] + [[; immediate

]] (–) gforth “right-bracket-bracket”

switch into postpone state

doc-[[

The unusual direction of the brackets indicates their
function:]] switches from compilation to postponing (i.e.,
compilation of compilation), just like] switches from im-
mediate execution (interpretation) to compilation. Con-
versely, [[switches from postponing to compilation, anan-
logous to [which switches from compilation to immediate
execution.

The real advantage of]] ... [[becomes apparent
when there are many words to POSTPONE. E.g., the word
compile-map-array (see Section 3.35 [Advanced macros
Tutorial], page 63) can be written much shorter as follows:

: compile-map-array (compilation: xt -- ; run-time: ... addr u -- ...)

\ at run-time, execute xt (... x -- ...) for each element of the

\ array beginning at addr and containing u elements

{ xt }

]] cells over + swap ?do

i @ [[xt compile,

1 cells]]L +loop [[;

This example also uses]]L as a shortcut for]]

literal. There are also other shortcuts

doc-]]L doc-]]2L doc-]]FL doc-]]SL

Note that parsing words don’t parse at postpone time;
if you want to provide the parsed string right away, you
have to switch back to compilation:

]] ... [[s" some string"]]2L ... [[

Chapter 5: Forth Words 191

]] ... [[[’] +]]L ... [[

Definitions of]] and friends in Standard Forth are pro-
vided in compat/macros.fs.

Immediate compiling words are similar to macros in
other languages (in particular, Lisp). The important dif-
ferences to macros in, e.g., C are:

• You use the same language for defining and process-
ing macros, not a separate preprocessing language and
processor.

• Consequently, the full power of Forth is available in
macro definitions. E.g., you can perform arbitrarily
complex computations, or generate different code con-
ditionally or in a loop (e.g., see Section 3.35 [Advanced
macros Tutorial], page 63). This power is very use-
ful when writing a parser generators or other code-
generating software.

• Macros defined using postpone etc. deal with the lan-
guage at a higher level than strings; name binding hap-
pens at macro definition time, so you can avoid the pit-
falls of name collisions that can happen in C macros.
Of course, Forth is a liberal language and also allows to
shoot yourself in the foot with text-interpreted macros
like

: [compile-+] s" +" evaluate ; immediate

Apart from binding the name at macro use time, using
evaluate also makes your definition state-smart (see
[state-smartness], page 179).

You may want the macro to compile a number into a
word. The word to do it is literal, but you have to
postpone it, so its compilation semantics take effect when
the macro is executed, not when it is compiled:

Chapter 5: Forth Words 192

: [compile-5] (--) \ compiled code: (-- n)

5 POSTPONE literal ; immediate

: foo [compile-5] ;

foo .

You may want to pass parameters to a macro, that
the macro should compile into the current definition. If
the parameter is a number, then you can use postpone

literal (similar for other values).

If you want to pass a word that is to be compiled, the
usual way is to pass an execution token and compile, it:

: twice1 (xt --) \ compiled code: ... -- ...

dup compile, compile, ;

: 2+ (n1 -- n2)

[’ 1+ twice1] ;

compile, (xt –) unknown “compile,”

Append the semantics represented by xt to the current
definition. When the resulting code fragment is run, it
behaves the same as if xt is executed.

An alternative available in Gforth, that allows you to
pass the compilation semantics as parameters is to use the
compilation token (see Section 5.11.2 [Compilation token],
page 183). The same example in this technique:

: twice (... ct -- ...) \ compiled code: ... -- ...

2dup 2>r execute 2r> execute ;

: 2+ (n1 -- n2)

[comp’ 1+ twice] ;

Chapter 5: Forth Words 193

In the example above 2>r and 2r> ensure that twice
works even if the executed compilation semantics has an
effect on the data stack.

You can also define complete definitions with these
words; this provides an alternative to using does> (see
Section 5.9.9 [User-defined Defining Words], page 161).
E.g., instead of

: curry+ (n1 "name" --)

CREATE ,

DOES> (n2 -- n1+n2)

@ + ;

you could define

: curry+ (n1 "name" --)

\ name execution: (n2 -- n1+n2)

>r : r> POSTPONE literal POSTPONE + POSTPONE ; ;

-3 curry+ 3-

see 3-

The sequence >r : r> is necessary, because : puts a
colon-sys on the data stack that makes everything below
it unaccessible.

This way of writing defining words is sometimes
more, sometimes less convenient than using does>

(see Section 5.9.9.3 [Advanced does> usage example],
page 169). One advantage of this method is that it can
be optimized better, because the compiler knows that the
value compiled with literal is fixed, whereas the data
associated with a created word can be changed.

Chapter 5: Forth Words 194

5.13 The Text Interpreter

The text interpreter15 is an endless loop that processes in-
put from the current input device. It is also called the
outer interpreter, in contrast to the inner interpreter (see
Chapter 14 [Engine], page 443) which executes the com-
piled Forth code on interpretive implementations.

The text interpreter operates in one of two states: inter-
pret state and compile state. The current state is defined
by the aptly-named variable state.

This section starts by describing how the text inter-
preter behaves when it is in interpret state, processing in-
put from the user input device – the keyboard. This is the
mode that a Forth system is in after it starts up.

The text interpreter works from an area of memory
called the input buffer16, which stores your keyboard input
when you press the RET key. Starting at the beginning of
the input buffer, it skips leading spaces (called delimiters)
then parses a string (a sequence of non-space characters)
until it reaches either a space character or the end of the
buffer. Having parsed a string, it makes two attempts to
process it:

• It looks for the string in a dictionary of definitions. If
the string is found, the string names a definition (also
known as a word) and the dictionary search returns
information that allows the text interpreter to perform

15 This is an expanded version of the material in Section 4.1 [Intro-
ducing the Text Interpreter], page 69.

16 When the text interpreter is processing input from the keyboard,
this area of memory is called the terminal input buffer (TIB) and
is addressed by the (obsolescent) words TIB and #TIB.

Chapter 5: Forth Words 195

the word’s interpretation semantics. In most cases, this
simply means that the word will be executed.

• If the string is not found in the dictionary, the text in-
terpreter attempts to treat it as a number, using the
rules described in Section 5.13.2 [Number Conversion],
page 199. If the string represents a legal number in the
current radix, the number is pushed onto a parame-
ter stack (the data stack for integers, the floating-point
stack for floating-point numbers).

If both attempts fail, the text interpreter discards the
remainder of the input buffer, issues an error message and
waits for more input. If one of the attempts succeeds, the
text interpreter repeats the parsing process until the whole
of the input buffer has been processed, at which point it
prints the status message “ ok” and waits for more input.

The text interpreter keeps track of its position in the
input buffer by updating a variable called >IN (pronounced
“to-in”). The value of >IN starts out as 0, indicating an
offset of 0 from the start of the input buffer. The region
from offset >IN @ to the end of the input buffer is called
the parse area17. This example shows how >IN changes as
the text interpreter parses the input buffer:

: remaining source >in @ /string

cr ." ->" type ." <-" ; immediate

1 2 3 remaining + remaining .

: foo 1 2 3 remaining swap remaining ;

17 In other words, the text interpreter processes the contents of the
input buffer by parsing strings from the parse area until the parse
area is empty.

Chapter 5: Forth Words 196

The result is:

->+ remaining .<-

->.<-5 ok

->SWAP remaining ;-<

->;<- ok

The value of >IN can also be modified by a word in
the input buffer that is executed by the text interpreter.
This means that a word can “trick” the text interpreter
into either skipping a section of the input buffer18 or into
parsing a section twice. For example:

: lat ." <<foo>>" ;

: flat ." <<bar>>" >IN DUP @ 3 - SWAP ! ;

When flat is executed, this output is produced19:

<<bar>><<foo>>

This technique can be used to work around some of the
interoperability problems of parsing words. Of course, it’s
better to avoid parsing words where possible.

Two important notes about the behaviour of the text in-
terpreter:

• It processes each input string to completion before pars-
ing additional characters from the input buffer.

• It treats the input buffer as a read-only region (and so
must your code).

When the text interpreter is in compile state, its behaviour
changes in these ways:

18 This is how parsing words work.
19 Exercise for the reader: what would happen if the 3 were replaced

with 4?

Chapter 5: Forth Words 197

• If a parsed string is found in the dictionary, the text
interpreter will perform the word’s compilation seman-
tics. In most cases, this simply means that the exe-
cution semantics of the word will be appended to the
current definition.

• When a number is encountered, it is compiled into the
current definition (as a literal) rather than being pushed
onto a parameter stack.

• If an error occurs, state is modified to put the text
interpreter back into interpret state.

• Each time a line is entered from the keyboard, Gforth
prints “ compiled” rather than “ ok”.

When the text interpreter is using an input device other
than the keyboard, its behaviour changes in these ways:

• When the parse area is empty, the text interpreter at-
tempts to refill the input buffer from the input source.
When the input source is exhausted, the input source
is set back to the previous input source.

• It doesn’t print out “ ok” or “ compiled” messages
each time the parse area is emptied.

• If an error occurs, the input source is set back to the
user input device.

You can read about this in more detail in Section 5.13.1
[Input Sources], page 198.

>in (– addr) core “to-in”

uvar variable – a-addr is the address of a cell containing
the char offset from the start of the input buffer to the start
of the parse area.

source (– addr u) core “source”

Chapter 5: Forth Words 198

Return address addr and length u of the current input
buffer

tib (– addr) core-ext-obsolescent “t-i-b”

#tib (– addr) core-ext-obsolescent “number-t-i-b”

uvar variable – a-addr is the address of a cell contain-
ing the number of characters in the terminal input buffer.
OBSOLESCENT: source superceeds the function of this
word.

5.13.1 Input Sources

By default, the text interpreter processes input from the
user input device (the keyboard) when Forth starts up.
The text interpreter can process input from any of these
sources:

• The user input device – the keyboard.

• A file, using the words described in Section 5.17.1 [Forth
source files], page 221.

• A block, using the words described in Section 5.18
[Blocks], page 230.

• A text string, using evaluate.

A program can identify the current input device from
the values of source-id and blk.

source-id (– 0 | -1 | fileid) core-ext,file “source-i-d”

Return 0 (the input source is the user input device), -1
(the input source is a string being processed by evaluate)
or a fileid (the input source is the file specified by fileid).

blk (– addr) block “b-l-k”

uvar variable – This cell contains the current block
number (or 0 if the current input source is not a block).

save-input (– x1 .. xn n) core-ext “save-input”

Chapter 5: Forth Words 199

The n entries xn - x1 describe the current state of
the input source specification, in some platform-dependent
way that can be used by restore-input.

restore-input (x1 .. xn n – flag) core-ext “restore-
input”

Attempt to restore the input source specification to the
state described by the n entries xn - x1. flag is true if the
restore fails. In Gforth with the new input code, it fails
only with a flag that can be used to throw again; it is
also possible to save and restore between different active
input streams. Note that closing the input streams must
happen in the reverse order as they have been opened, but
in between everything is allowed.

evaluate (... addr u – ...) core,block “evaluate”

Save the current input source specification. Store -1 in
source-id and 0 in blk. Set >IN to 0 and make the string
c-addr u the input source and input buffer. Interpret.
When the parse area is empty, restore the input source
specification.

query (–) core-ext-obsolescent “query”

Make the user input device the input source. Receive
input into the Terminal Input Buffer. Set >IN to zero.
OBSOLESCENT: superceeded by accept.

5.13.2 Number Conversion

This section describes the rules that the text interpreter
uses when it tries to convert a string into a number.

Let <digit> represent any character that is a legal digit
in the current number base20.

20 For example, 0-9 when the number base is decimal or 0-9, A-F
when the number base is hexadecimal.

Chapter 5: Forth Words 200

Let <decimal digit> represent any character in the range
0-9.

Let {a b} represent the optional presence of any of the
characters in the braces (a or b or neither).

Let * represent any number of instances of the previous
character (including none).

Let any other character represent itself.

Now, the conversion rules are:

• A string of the form <digit><digit>* is treated as a
single-precision (cell-sized) positive integer. Examples
are 0 123 6784532 32343212343456 42

• A string of the form -<digit><digit>* is treated as a
single-precision (cell-sized) negative integer, and is rep-
resented using 2’s-complement arithmetic. Examples
are -45 -5681 -0

• A string of the form <digit><digit>*.<digit>* is treated
as a double-precision (double-cell-sized) positive inte-
ger. Examples are 3465. 3.465 34.65 (all three of these
represent the same number).

• A string of the form -<digit><digit>*.<digit>* is treated
as a double-precision (double-cell-sized) negative in-
teger, and is represented using 2’s-complement arith-
metic. Examples are -3465. -3.465 -34.65 (all three of
these represent the same number).

• A string of the form {+ -}<decimal digit>{.}<decimal
digit>*{e E}{+ -}<decimal digit><decimal digit>* is
treated as a floating-point number. Examples are 1e
1e0 1.e 1.e0 +1e+0 (which all represent the same num-
ber) +12.E-4

By default, the number base used for integer number
conversion is given by the contents of the variable base.

Chapter 5: Forth Words 201

Note that a lot of confusion can result from unexpected
values of base. If you change base anywhere, make sure
to save the old value and restore it afterwards; better yet,
use base-execute, which does this for you. In general I
recommend keeping base decimal, and using the prefixes
described below for the popular non-decimal bases.

dpl (– a-addr) gforth “dpl”

User variable – a-addr is the address of a cell that
stores the position of the decimal point in the most recent
numeric conversion. Initialised to -1. After the conversion
of a number containing no decimal point, dpl is -1. After
the conversion of 2. it holds 0. After the conversion of
234123.9 it contains 1, and so forth.

base-execute (i*x xt u – j*x) gforth “base-execute”

execute xt with the content of BASE being u, and restor-
ing the original BASE afterwards.

base (– a-addr) core “base”

User variable – a-addr is the address of a cell that
stores the number base used by default for number con-
version during input and output. Don’t store to base, use
base-execute instead.

hex (–) core-ext “hex”

Set base to &16 (hexadecimal). Don’t use hex, use
base-execute instead.

decimal (–) core “decimal”

Set base to &10 (decimal). Don’t use decimal, use
base-execute instead.

Chapter 5: Forth Words 202

Gforth allows you to override the value of base by using
a prefix21 before the first digit of an (integer) number. The
following prefixes are supported:

• & – decimal

• # – decimal

• % – binary

• $ – hexadecimal

• 0x – hexadecimal, if base<33.

• ’ – numeric value (e.g., ASCII code) of next character;
an optional ’ may be present after the character.

Here are some examples, with the equivalent decimal
number shown after in braces:

-$41 (-65), %1001101 (205), %1001.0001 (145 - a
double-precision number), ’A (65), -’a’ (-97), &905 (905),
$abc (2478), $ABC (2478).

Number conversion has a number of traps for the unwary:

• You cannot determine the current number base using
the code sequence base @ . – the number base is always
10 in the current number base. Instead, use something
like base @ dec.

• If the number base is set to a value greater than 14
(for example, hexadecimal), the number 123E4 is am-
biguous; the conversion rules allow it to be intepreted
as either a single-precision integer or a floating-point

21 Some Forth implementations provide a similar scheme by imple-
menting $ etc. as parsing words that process the subsequent
number in the input stream and push it onto the stack. For ex-
ample, see Number Conversion and Literals, by Wil Baden; Forth
Dimensions 20(3) pages 26–27. In such implementations, unlike
in Gforth, a space is required between the prefix and the number.

Chapter 5: Forth Words 203

number (Gforth treats it as an integer). The ambigu-
ity can be resolved by explicitly stating the sign of the
mantissa and/or exponent: 123E+4 or +123E4 – if the
number base is decimal, no ambiguity arises; either rep-
resentation will be treated as a floating-point number.

• There is a word bin but it does not set the number
base! It is used to specify file types.

• Standard Forth requires the . of a double-precision
number to be the final character in the string. Gforth
allows the . to be anywhere after the first digit.

• The number conversion process does not check for over-
flow.

• In a Standard Forth program base is required to be
decimal when converting floating-point numbers. In
Gforth, number conversion to floating-point numbers
always uses base &10, irrespective of the value of base.

You can read numbers into your programs with the
words described in Section 5.19.8 [Line input and conver-
sion], page 259.

5.13.3 Interpret/Compile states

A standard program is not permitted to change state ex-
plicitly. However, it can change state implicitly, using
the words [and]. When [is executed it switches state
to interpret state, and therefore the text interpreter starts
interpreting. When] is executed it switches state to com-
pile state and therefore the text interpreter starts compil-
ing. The most common usage for these words is for switch-
ing into interpret state and back from within a colon defi-
nition; this technique can be used to compile a literal (for
an example, see Section 5.12.1 [Literals], page 186) or for

Chapter 5: Forth Words 204

conditional compilation (for an example, see Section 5.13.4
[Interpreter Directives], page 204).

5.13.4 Interpreter Directives

These words are usually used in interpret state; typically
to control which parts of a source file are processed by
the text interpreter. There are only a few Standard Forth
Standard words, but Gforth supplements these with a rich
set of immediate control structure words to compensate
for the fact that the non-immediate versions can only be
used in compile state (see Section 5.8 [Control Structures],
page 128). Typical usages:

FALSE Constant HAVE-ASSEMBLER

.

.

HAVE-ASSEMBLER [IF]

: ASSEMBLER-FEATURE

...

;

[ENDIF]

.

.

: SEE

... \ general-purpose SEE code

[HAVE-ASSEMBLER [IF]]

... \ assembler-specific SEE code

[[ENDIF]]

;

[IF] (flag –) tools-ext “bracket-if”

If flag is TRUE do nothing (and therefore execute sub-
sequent words as normal). If flag is FALSE, parse and dis-
card words from the parse area (refilling it if necessary us-

Chapter 5: Forth Words 205

ing REFILL) including nested instances of [IF].. [ELSE]..
[THEN] and [IF].. [THEN] until the balancing [ELSE] or
[THEN] has been parsed and discarded. Immediate word.

[ELSE] (–) tools-ext “bracket-else”

Parse and discard words from the parse area (refilling
it if necessary using REFILL) including nested instances
of [IF].. [ELSE].. [THEN] and [IF].. [THEN] until the
balancing [THEN] has been parsed and discarded. [ELSE]
only gets executed if the balancing [IF] was TRUE; if it was
FALSE, [IF] would have parsed and discarded the [ELSE],
leaving the subsequent words to be executed as normal.
Immediate word.

[THEN] (–) tools-ext “bracket-then”

Do nothing; used as a marker for other words to parse
and discard up to. Immediate word.

[ENDIF] (–) gforth “bracket-end-if”

Do nothing; synonym for [THEN]

[IFDEF] ("<spaces>name" –) gforth “bracket-if-def”

If name is found in the current search-order, behave like
[IF] with a TRUE flag, otherwise behave like [IF] with a
FALSE flag. Immediate word.

[IFUNDEF] ("<spaces>name" –) gforth “bracket-if-un-
def”

If name is not found in the current search-order, behave
like [IF] with a TRUE flag, otherwise behave like [IF] with
a FALSE flag. Immediate word.

[?DO] (n-limit n-index –) gforth “bracket-question-do”

[DO] (n-limit n-index –) gforth “bracket-do”

[FOR] (n –) gforth “bracket-for”

Chapter 5: Forth Words 206

[LOOP] (–) gforth “bracket-loop”

[+LOOP] (n –) gforth “bracket-question-plus-loop”

[NEXT] (n –) gforth “bracket-next”

[BEGIN] (–) gforth “bracket-begin”

[UNTIL] (flag –) gforth “bracket-until”

[AGAIN] (–) gforth “bracket-again”

[WHILE] (flag –) gforth “bracket-while”

[REPEAT] (–) gforth “bracket-repeat”

5.13.5 Recognizers

The standard Forth text interpreter recognizes the follow-
ing types of tokens: words in the dictionary, integer num-
bers, and floating point numbers. Defining new types of
tokens isn’t yet standardized. Gforth provides recognizers
to make the text interpreter extensible as well.

Recognizers take a string and return some data and
a “table” for interpreting that data. Gforth implements
that table as xt (which means any xt is a valid result of
a recognizer), but other Forth systems can implement it
as actual table, with three xts inside. The first xt is the
interpretation/run-time xt, it performs the interpretation
semantics on the data (usually, this means it just leaves the
data on the stack). The second xt performs the compila-
tion semantics, it gets the data and the run-time semantics
xt. The third xt perfoms the postpone semantics, it also
gets the data and the run-time semantics xt. You can use
post, to postpone the run-time xt.

Recognizers are organized as stack, so you can arrange
the sequence of recognizers in the same way as the vocab-
ulary stack.

notfound () unknown “notfound”

Chapter 5: Forth Words 207

If a recognizer fails, it returns notfound

rec-nt (addr u – nt recognized-nt | notfound) un-
known “rec-nt”

recognize a name token

rec-num (addr u – n/d table | notfound) unknown “rec-
num”

converts a number to a single/double integer

rec-float (addr u – r recognized-float | notfound) un-
known “rec-float”

recognize floating point numbers

rec-string (addr u – addr u’ r:string | rectype-null) un-
known “rec-string”

Convert strings enclosed in double quotes into string
literals, escapes are treated as in S\".

rec-to (addr u – xt r:to | rectype-null) unknown “rec-
to”

words prefixed with -> are treated as if preceeded by
TO or IS, with +> as +TO and with ’> as ADDR.

rec-tick (addr u – xt rectype-num | rectype-null) un-
known “rec-tick”

words prefixed with ‘ return their xt. Example: ‘dup
gives the xt of dup

rec-dtick (addr u – nt rectype-num | rectype-null) un-
known “rec-dtick”

words prefixed with ‘‘ return their nt. Example: ‘‘S"
gives the nt of S"

rec-body (addr u – xt recognized-tick | recognized-null) un-
known “rec-body”

Chapter 5: Forth Words 208

words bracketed with ’<’ ’>’ return their body. Ex-
ample: <dup> gives the body of dup

get-recognizers (– xt1 .. xtn n) unknown “get-
recognizers”

push the content on the recognizer stack

set-recognizers (xt1 .. xtn n) unknown “set-recognizers”

set the recognizer stack from content on the stack

recognize (addr u rec-addr – ... rectype) unknown “recognize”

apply a recognizer stack to a string, delivering a token

rec-sequence: (x1 .. xn n "name" –) unknown “rec-
sequence:”

forth-recognize () unknown “forth-recognize”

5.14 The Input Stream

The text interpreter reads from the input stream, which
can come from several sources (see Section 5.13.1 [Input
Sources], page 198). Some words, in particular defining
words, but also words like ’, read parameters from the
input stream instead of from the stack.

Such words are called parsing words, because they parse
the input stream. Parsing words are hard to use in other
words, because it is hard to pass program-generated pa-
rameters through the input stream. They also usually have
an unintuitive combination of interpretation and compila-
tion semantics when implemented naively, leading to var-
ious approaches that try to produce a more intuitive be-
haviour (see Section 5.10.1 [Combined words], page 178).

It should be obvious by now that parsing words are
a bad idea. If you want to implement a parsing word
for convenience, also provide a factor of the word that

Chapter 5: Forth Words 209

does not parse, but takes the parameters on the stack. To
implement the parsing word on top if it, you can use the
following words:

parse (xchar "ccc<xchar>" – c-addr u) core-ext,xchar “parse”

Parse ccc, delimited by xchar, in the parse area. c-addr
u specifies the parsed string within the parse area. If the
parse area was empty, u is 0.

parse-name ("name" – c-addr u) gforth “parse-name”

Get the next word from the input buffer

parse-word (– c-addr u) gforth-obsolete “parse-word”

old name for parse-name; this word has a conflicting
behaviour in some other systems.

name (– c-addr u) gforth-obsolete “name”

old name for parse-name

word (char "<chars>ccc<char>– c-addr) core “word”

Skip leading delimiters. Parse ccc, delimited by char, in
the parse area. c-addr is the address of a transient region
containing the parsed string in counted-string format. If
the parse area was empty or contained no characters other
than delimiters, the resulting string has zero length. A
program may replace characters within the counted string.
OBSOLESCENT: the counted string has a trailing space
that is not included in its length.

refill (– flag) core-ext,block-ext,file-ext “refill”

Attempt to fill the input buffer from the input source.
When the input source is the user input device, attempt to
receive input into the terminal input device. If successful,
make the result the input buffer, set >IN to 0 and return
true; otherwise return false. When the input source is a
block, add 1 to the value of BLK to make the next block

Chapter 5: Forth Words 210

the input source and current input buffer, and set >IN to
0; return true if the new value of BLK is a valid block num-
ber, false otherwise. When the input source is a text file,
attempt to read the next line from the file. If successful,
make the result the current input buffer, set >IN to 0 and
return true; otherwise, return false. A successful result
includes receipt of a line containing 0 characters.

If you have to deal with a parsing word that does not
have a non-parsing factor, you can use execute-parsing

to pass a string to it:

execute-parsing (... addr u xt – ...) gforth “execute-
parsing”

Make addr u the current input source, execute xt (...

-- ...), then restore the previous input source.

Example:

5 s" foo" ’ constant execute-parsing

\ equivalent to

5 constant foo

A definition of this word in Standard Forth is provided
in compat/execute-parsing.fs.

If you want to run a parsing word on a file, the following
word should help:

execute-parsing-file (i*x fileid xt – j*x) gforth “execute-
parsing-file”

Make fileid the current input source, execute xt (i*x

-- j*x), then restore the previous input source.

5.15 Word Lists

A wordlist is a list of named words; you can add new
words and look up words by name (and you can remove

Chapter 5: Forth Words 211

words in a restricted way with markers). Every named
(and revealed) word is in one wordlist.

The text interpreter searches the wordlists present in
the search order (a stack of wordlists), from the top to the
bottom. Within each wordlist, the search starts concep-
tually at the newest word; i.e., if two words in a wordlist
have the same name, the newer word is found.

New words are added to the compilation wordlist (aka
current wordlist).

A word list is identified by a cell-sized word list iden-
tifier (wid) in much the same way as a file is identified
by a file handle. The numerical value of the wid has no
(portable) meaning, and might change from session to ses-
sion.

The Standard Forth “Search order” word set is
intended to provide a set of low-level tools that allow
various different schemes to be implemented. Gforth
also provides vocabulary, a traditional Forth word.
compat/vocabulary.fs provides an implementation in
Standard Forth.

forth-wordlist (– wid) search “forth-wordlist”

Constant – wid identifies the word list that includes all
of the standard words provided by Gforth. When Gforth
is invoked, this word list is the compilation word list and
is at the top of the search order.

definitions (–) search “definitions”

Set the compilation word list to be the same as the
word list that is currently at the top of the search order.

get-current (– wid) search “get-current”

wid is the identifier of the current compilation word
list.

Chapter 5: Forth Words 212

set-current (wid –) search “set-current”

Set the compilation word list to the word list identified
by wid.

get-order (– widn .. wid1 n) search “get-order”

Copy the search order to the data stack. The current
search order has n entries, of which wid1 represents the
wordlist that is searched first (the word list at the top of
the search order) and widn represents the wordlist that is
searched last.

set-order (widn .. wid1 n –) search “set-order”

If n=0, empty the search order. If n=-1, set the search
order to the implementation-defined minimum search or-
der (for Gforth, this is the word list Root). Otherwise, re-
place the existing search order with the n wid entries such
that wid1 represents the word list that will be searched
first and widn represents the word list that will be searched
last.

wordlist (– wid) search “wordlist”

Create a new, empty word list represented by wid.

table (– wid) gforth “table”

Create a lookup table (case-sensitive, no warnings).

cs-wordlist (– wid) gforth “cs-wordlist”

Create a case-sensitive wordlist.

cs-vocabulary ("name" –) gforth “cs-vocabulary”

Create a case-sensitive vocabulary

>order (wid –) gforth “to-order”

Push wid on the search order.

previous (–) search-ext “previous”

Chapter 5: Forth Words 213

Drop the wordlist at the top of the search order.

also (–) search-ext “also”

Like DUP for the search order. Usually used before a
vocabulary (e.g., also Forth); the combined effect is to
push the wordlist represented by the vocabulary on the
search order.

Forth (–) search-ext “Forth”

Replace the wid at the top of the search order with the
wid associated with the word list forth-wordlist.

Only (–) search-ext “Only”

Set the search order to the implementation-defined
minimum search order (for Gforth, this is the word list
Root).

order (–) search-ext “order”

Print the search order and the compilation word list.
The word lists are printed in the order in which they are
searched (which is reversed with respect to the conven-
tional way of displaying stacks). The compilation word
list is displayed last.

find (c-addr – xt +-1 | c-addr 0) core,search “find”

Search all word lists in the current search order for the
definition named by the counted string at c-addr. If the
definition is not found, return 0. If the definition is found
return 1 (if the definition has non-default compilation se-
mantics) or -1 (if the definition has default compilation
semantics). The xt returned in interpret state represents
the interpretation semantics. The xt returned in com-
pile state represented either the compilation semantics (for
non-default compilation semantics) or the run-time seman-
tics that the compilation semantics would compile, (for

Chapter 5: Forth Words 214

default compilation semantics). The ANS Forth standard
does not specify clearly what the returned xt represents
(and also talks about immediacy instead of non-default
compilation semantics), so this word is questionable in
portable programs. If non-portability is ok, find-name

and friends are better (see Section 5.11.3 [Name token],
page 184).

search-wordlist (c-addr count wid – 0 | xt +-1) search “search-
wordlist”

Search the word list identified by wid for the definition
named by the string at c-addr count. If the definition
is not found, return 0. If the definition is found return
1 (if the definition is immediate) or -1 (if the definition
is not immediate) together with the xt. In Gforth, the
xt returned represents the interpretation semantics. ANS
Forth does not specify clearly what xt represents.

words (–) tools “words”

Display a list of all of the definitions in the word list at
the top of the search order.

vlist (–) gforth “vlist”

Old (pre-Forth-83) name for WORDS.

Root (–) gforth “Root”

Add the root wordlist to the search order stack. This
vocabulary makes up the minimum search order and con-
tains only a search-order words.

Vocabulary ("name" –) gforth “Vocabulary”

Create a definition "name" and associate a new word
list with it. The run-time effect of "name" is to replace the
wid at the top of the search order with the wid associated
with the new word list.

seal (–) gforth “seal”

Chapter 5: Forth Words 215

Remove all word lists from the search order stack other
than the word list that is currently on the top of the search
order stack.

vocs (–) gforth “vocs”

List vocabularies and wordlists defined in the system.

current (– addr) gforth “current”

Variable – holds the wid of the compilation word list.

context (– addr) gforth “context”

context @ is the wid of the word list at the top of the
search order.

5.15.1 Vocabularies

Here is an example of creating and using a new wordlist
using Standard Forth words:

wordlist constant my-new-words-wordlist

: my-new-words get-order nip my-new-words-wordlist swap set-order ;

\ add it to the search order

also my-new-words

\ alternatively, add it to the search order and make it

\ the compilation word list

also my-new-words definitions

\ type "order" to see the problem

The problem with this example is that order has no
way to associate the name my-new-words with the wid
of the word list (in Gforth, order and vocs will display
??? for a wid that has no associated name). There is no
Standard way of associating a name with a wid.

In Gforth, this example can be re-coded using
vocabulary, which associates a name with a wid:

Chapter 5: Forth Words 216

vocabulary my-new-words

\ add it to the search order

also my-new-words

\ alternatively, add it to the search order and make it

\ the compilation word list

my-new-words definitions

\ type "order" to see that the problem is solved

5.15.2 Why use word lists?

Here are some reasons why people use wordlists:

• To prevent a set of words from being used outside the
context in which they are valid. Two classic examples of
this are an integrated editor (all of the edit commands
are defined in a separate word list; the search order is
set to the editor word list when the editor is invoked;
the old search order is restored when the editor is ter-
minated) and an integrated assembler (the op-codes for
the machine are defined in a separate word list which
is used when a CODE word is defined).

• To organize the words of an application or library into
a user-visible set (in forth-wordlist or some other
common wordlist) and a set of helper words used just
for the implementation (hidden in a separate wordlist).
This keeps words’ output smaller, separates implemen-
tation and interface, and reduces the chance of name
conflicts within the common wordlist.

• To prevent a name-space clash between multiple defini-
tions with the same name. For example, when building
a cross-compiler you might have a word IF that gener-
ates conditional code for your target system. By placing

Chapter 5: Forth Words 217

this definition in a different word list you can control
whether the host system’s IF or the target system’s IF
get used in any particular context by controlling the
order of the word lists on the search order stack.

The downsides of using wordlists are:

• Debugging becomes more cumbersome.

• Name conflicts worked around with wordlists are still
there, and you have to arrange the search order care-
fully to get the desired results; if you forget to do that,
you get hard-to-find errors (as in any case where you
read the code differently from the compiler; see can
help seeing which of several possible words the name
resolves to in such cases). See displays just the name
of the words, not what wordlist they belong to, so it
might be misleading. Using unique names is a better
approach to avoid name conflicts.

• You have to explicitly undo any changes to the search
order. In many cases it would be more convenient if this
happened implicitly. Gforth currently does not provide
such a feature, but it may do so in the future.

5.15.3 Word list example

The following example is from the garbage collec-
tor (http://www.complang.tuwien.ac.at/forth/
garbage-collection.zip) and uses wordlists to separate
public words from helper words:

get-current (wid)

vocabulary garbage-collector also garbage-collector definitions

... \ define helper words

(wid) set-current \ restore original (i.e., public) compilation wordlist

... \ define the public (i.e., API) words

http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip
http://www.complang.tuwien.ac.at/forth/garbage-collection.zip

Chapter 5: Forth Words 218

\ they can refer to the helper words

previous \ restore original search order (helper words become invisible)

5.16 Environmental Queries

Forth-94 introduced the idea of “environmental queries”
as a way for a program running on a system to determine
certain characteristics of the system. The Standard spec-
ifies a number of strings that might be recognised by a
system.

The Standard requires that the header space used for
environmental queries be distinct from the header space
used for definitions.

Typically, environmental queries are supported by cre-
ating a set of definitions in a word list that is only used
during environmental queries; that is what Gforth does.
There is no Standard way of adding definitions to the set
of recognised environmental queries, but any implementa-
tion that supports the loading of optional word sets must
have some mechanism for doing this (after loading the
word set, the associated environmental query string must
return true). In Gforth, the word list used to honour envi-
ronmental queries can be manipulated just like any other
word list.

environment? (c-addr u – false / ... true) core “environment-
query”

c-addr, u specify a counted string. If the string is
not recognised, return a false flag. Otherwise return a
true flag and some (string-specific) information about the
queried string.

environment-wordlist (– wid) gforth “environment-
wordlist”

Chapter 5: Forth Words 219

wid identifies the word list that is searched by environ-
mental queries.

gforth (– c-addr u) gforth-environment “gforth”

Counted string representing a version string for this
version of Gforth (for versions>0.3.0). The version strings
of the various versions are guaranteed to be ordered lexi-
cographically.

os-class (– c-addr u) gforth-environment “os-class”

Counted string representing a description of the host
operating system.

Note that, whilst the documentation for (e.g.) gforth

shows it returning two items on the stack, querying it using
environment? will return an additional item; the true flag
that shows that the string was recognised.

Here are some examples of using environmental queries:

s" address-unit-bits" environment? 0=

[IF]

cr .(environmental attribute address-units-bits unknown...) cr

[ELSE]

drop \ ensure balanced stack effect

[THEN]

\ this might occur in the prelude of a standard program that uses THROW

s" exception" environment? [IF]

0= [IF]

: throw abort" exception thrown" ;

[THEN]

[ELSE] \ we don’t know, so make sure

: throw abort" exception thrown" ;

[THEN]

Chapter 5: Forth Words 220

s" gforth" environment? [IF] .(Gforth version) TYPE

[ELSE] .(Not Gforth..) [THEN]

\ a program using v*

s" gforth" environment? [IF]

s" 0.5.0" compare 0< [IF] \ v* is a primitive since 0.5.0

: v* (f_addr1 nstride1 f_addr2 nstride2 ucount -- r)

>r swap 2swap swap 0e r> 0 ?DO

dup f@ over + 2swap dup f@ f* f+ over + 2swap

LOOP

2drop 2drop ;

[THEN]

[ELSE] \

: v* (f_addr1 nstride1 f_addr2 nstride2 ucount -- r)

...

[THEN]

Here is an example of adding a definition to the envi-
ronment word list:

get-current environment-wordlist set-current

true constant block

true constant block-ext

set-current

You can see what definitions are in the environment
word list like this:

environment-wordlist >order words previous

5.17 Files

Gforth provides facilities for accessing files that are stored
in the host operating system’s file-system. Files that are
processed by Gforth can be divided into two categories:

Chapter 5: Forth Words 221

• Files that are processed by the Text Interpreter (Forth
source files).

• Files that are processed by some other program (general
files).

5.17.1 Forth source files

The simplest way to interpret the contents of a file is to
use one of these two formats:

include mysource.fs

s" mysource.fs" included

You usually want to include a file only if it is not in-
cluded already (by, say, another source file). In that case,
you can use one of these three formats:

require mysource.fs

needs mysource.fs

s" mysource.fs" required

It is good practice to write your source files such that in-
terpreting them does not change the stack. Source files de-
signed in this way can be used with required and friends
without complications. For example:

1024 require foo.fs drop

Here you want to pass the argument 1024 (e.g., a buffer
size) to foo.fs. Interpreting foo.fs has the stack effect (
n – n), which allows its use with require. Of course with
such parameters to required files, you have to ensure that
the first require fits for all uses (i.e., require it early in
the master load file).

include-file (i*x wfileid – j*x) file “include-file”

Interpret (process using the text interpreter) the con-
tents of the file wfileid.

included (i*x c-addr u – j*x) file “included”

Chapter 5: Forth Words 222

include-file the file whose name is given by the string
c-addr u.

included? (c-addr u – f) gforth “included?”

True only if the file c-addr u is in the list of earlier
included files. If the file has been loaded, it may have
been specified as, say, foo.fs and found somewhere on
the Forth search path. To return true from included?,
you must specify the exact path to the file, even if that is
./foo.fs

include (... "file" – ...) gforth “include”

include-file the file file.

required (i*x addr u – i*x) gforth “required”

include-file the file with the name given by addr u,
if it is not included (or required) already. Currently
this works by comparing the name of the file (with path)
against the names of earlier included files.

require (... "file" – ...) gforth “require”

include-file file only if it is not included already.

needs (... "name" – ...) gforth “needs”

An alias for require; exists on other systems (e.g.,
Win32Forth).

sourcefilename (– c-addr u) gforth “sourcefilename”

The name of the source file which is currently the input
source. The result is valid only while the file is being
loaded. If the current input source is no (stream) file, the
result is undefined. In Gforth, the result is valid during
the whole session (but not across savesystem etc.).

sourceline# (– u) gforth “sourceline-number”

The line number of the line that is currently being inter-
preted from a (stream) file. The first line has the number

Chapter 5: Forth Words 223

1. If the current input source is not a (stream) file, the
result is undefined.

A definition in Standard Forth for required is provided
in compat/required.fs.

5.17.2 General files

Files are opened/created by name and type. The following
file access methods (FAMs) are recognised:

r/o (– fam) file “r-o”

r/w (– fam) file “r-w”

w/o (– fam) file “w-o”

bin (fam1 – fam2) file “bin”

When a file is opened/created, it returns a file identifier,
wfileid that is used for all other file commands. All file
commands also return a status value, wior, that is 0 for a
successful operation and an implementation-defined non-
zero value in the case of an error.

open-file (c-addr u wfam – wfileid wior) file “open-file”

create-file (c-addr u wfam – wfileid wior) file “create-
file”

close-file (wfileid – wior) file “close-file”

delete-file (c-addr u – wior) file “delete-file”

rename-file (c-addr1 u1 c-addr2 u2 – wior) file-ext “rename-
file”

Rename file c addr1 u1 to new name c addr2 u2

read-file (c-addr u1 wfileid – u2 wior) file “read-file”

Read u1 characters from file wfileid into the buffer at
c addr. A non-zero wior indicates an error. U2 indicates

Chapter 5: Forth Words 224

the length of the read data. End-of-file is not an error and
is indicated by u2$<$u1 and wior=0.

read-line (c addr u1 wfileid – u2 flag wior) file “read-
line”

Reads a line from wfileid into the buffer at c addr u1.
Gforth supports all three common line terminators: LF,
CR and CRLF. A non-zero wior indicates an error. A
false flag indicates that read-line has been invoked at
the end of the file. u2 indicates the line length (without
terminator): u2$<$u1 indicates that the line is u2 chars
long; u2=u1 indicates that the line is at least u1 chars
long, the u1 chars of the buffer have been filled with chars
from the line, and the next slice of the line with be read
with the next read-line. If the line is u1 chars long,
the first read-line returns u2=u1 and the next read-line
returns u2=0.

key-file (fd – key) unknown “key-file”

Read one character n from wfileid. This word disables
buffering for wfileid. If you want to read characters from
a terminal in non-canonical (raw) mode, you have to put
the terminal in non-canonical mode yourself (using the C
interface); the exception is stdin: Gforth automatically
puts it into non-canonical mode.

key?-file (wfileid – f) gforth “key-q-file”

f is true if at least one character can be read from
wfileid without blocking. If you also want to use
read-file or read-line on the file, you have to call
key?-file or key-file first (these two words disable
buffering).

write-file (c-addr u1 wfileid – wior) file “write-file”

write-line (c-addr u wfileid – ior) file “write-line”

Chapter 5: Forth Words 225

emit-file (c wfileid – wior) gforth “emit-file”

flush-file (wfileid – wior) file-ext “flush-file”

file-status (c-addr u – wfam wior) file-ext “file-status”

file-position (wfileid – ud wior) file “file-position”

reposition-file (ud wfileid – wior) file “reposition-file”

file-size (wfileid – ud wior) file “file-size”

resize-file (ud wfileid – wior) file “resize-file”

slurp-file (c-addr1 u1 – c-addr2 u2) gforth “slurp-file”

c-addr1 u1 is the filename, c-addr2 u2 is the file’s con-
tents

slurp-fid (fid – addr u) gforth “slurp-fid”

addr u is the content of the file fid

stdin (– wfileid) gforth “stdin”

The standard input file of the Gforth process.

stdout (– wfileid) gforth “stdout”

The standard output file of the Gforth process.

stderr (– wfileid) gforth “stderr”

The standard error output file of the Gforth process.

5.17.3 Redirection

You can redirect the output of type and emit and all
the words that use them (all output words that don’t
have an explicit target file) to an arbitrary file with the
outfile-execute, used like this:

: some-warning (n --)

cr ." warning# " . ;

: print-some-warning (n --)

[’] some-warning stderr outfile-execute ;

Chapter 5: Forth Words 226

After some-warning is executed, the original output
direction is restored; this construct is safe against excep-
tions. Similarly, there is infile-execute for redirecting
the input of key and its users (any input word that does
not take a file explicitly).

outfile-execute (... xt file-id – ...) gforth “outfile-
execute”

execute xt with the output of type etc. redirected to
file-id.

infile-execute (... xt file-id – ...) gforth “infile-
execute”

execute xt with the input of key etc. redirected to file-
id.

If you do not want to redirect the input or output to
a file, you can also make use of the fact that key, emit
and type are deferred words (see Section 5.9.10 [Deferred
Words], page 173). However, in that case you have to
worry about the restoration and the protection against ex-
ceptions yourself; also, note that for redirecting the output
in this way, you have to redirect both emit and type.

5.17.4 Directories

You can open and read directories similar to files. Reading
gives you one directory entry at a time; you can match that
to a filename (with wildcards).

open-dir (c-addr u – wdirid wior) gforth “open-dir”

Open the directory specified by c-addr, u and return
dir-id for futher access to it.

read-dir (c-addr u1 wdirid – u2 flag wior) gforth “read-
dir”

Chapter 5: Forth Words 227

Attempt to read the next entry from the directory spec-
ified by dir-id to the buffer of length u1 at address c-addr.
If the attempt fails because there is no more entries, ior=0,
flag=0, u2=0, and the buffer is unmodified. If the attempt
to read the next entry fails because of any other reason,
return ior<>0. If the attempt succeeds, store file name to
the buffer at c-addr and return ior=0, flag=true and u2
equal to the size of the file name. If the length of the file
name is greater than u1, store first u1 characters from file
name into the buffer and indicate "name too long" with
ior, flag=true, and u2=u1.

close-dir (wdirid – wior) gforth “close-dir”

Close the directory specified by dir-id.

filename-match (c-addr1 u1 c-addr2 u2 – flag) gforth “match-
file”

match the file name c addr1 u1 with the pattern
c addr2 u2. Patterns match char by char except for the
special characters ’*’ and ’?’, which are wildcards for sev-
eral (’*’) or one (’?’) character.

get-dir (c-addr1 u1 – c-addr2 u2) gforth “get-dir”

Store the current directory in the buffer specified by
c-addr1, u1. If the buffer size is not sufficient, return 0 0

set-dir (c-addr u – wior) gforth “set-dir”

Change the current directory to c-addr, u. Return an
error if this is not possible

=mkdir (c-addr u wmode – wior) gforth “equals-mkdir”

Create directory c-addr u with mode wmode.

mkdir-parents (c-addr u mode – ior) unknown “mkdir-
parents”

Chapter 5: Forth Words 228

create the directory c-addr u and all its parents with
mode mode (modified by umask)

5.17.5 Search Paths

If you specify an absolute filename (i.e., a filename starting
with / or ~, or with : in the second position (as in ‘C:...’))
for included and friends, that file is included just as you
would expect.

If the filename starts with ./, this refers to the direc-
tory that the present file was included from. This allows
files to include other files relative to their own position (ir-
respective of the current working directory or the absolute
position). This feature is essential for libraries consisting
of several files, where a file may include other files from
the library. It corresponds to #include "..." in C. If the
current input source is not a file, . refers to the directory
of the innermost file being included, or, if there is no file
being included, to the current working directory.

For relative filenames (not starting with ./), Gforth
uses a search path similar to Forth’s search order (see
Section 5.15 [Word Lists], page 210). It tries to find the
given filename in the directories present in the path, and
includes the first one it finds. There are separate search
paths for Forth source files and general files. If the search
path contains the directory ., this refers to the directory
of the current file, or the working directory, as if the file
had been specified with ./.

Use ~+ to refer to the current working directory (as in
the bash).

Chapter 5: Forth Words 229

5.17.5.1 Source Search Paths

The search path is initialized when you start Gforth (see
Section 2.1 [Invoking Gforth], page 4). You can display it
and change it using fpath in combination with the general
path handling words.

fpath (– path-addr) gforth “fpath”

Here is an example of using fpath and require:

fpath path= /usr/lib/forth/|./

require timer.fs

5.17.5.2 General Search Paths

Your application may need to search files in several direc-
tories, like included does. To facilitate this, Gforth allows
you to define and use your own search paths, by providing
generic equivalents of the Forth search path words:

open-path-file (addr1 u1 path-addr – wfileid addr2 u2 0 | ior) gforth “open-
path-file”

Look in path path-addr for the file specified by addr1
u1. If found, the resulting path and and (read-only) open
file descriptor are returned. If the file is not found, ior is
what came back from the last attempt at opening the file
(in the current implementation).

doc-path-allot

clear-path (path-addr –) gforth “clear-path”

Set the path path-addr to empty.

also-path (c-addr len path-addr –) gforth “also-path”

add the directory c-addr len to path-addr.

.path (path-addr –) gforth “.path”

Display the contents of the search path path-addr.

path+ (path-addr "dir" –) gforth “path+”

Chapter 5: Forth Words 230

Add the directory dir to the search path path-addr.

path= (path-addr "dir1|dir2|dir3") gforth “path=”

Make a complete new search path; the path separator
is |.

Here’s an example of creating an empty search path:

create mypath 500 path-allot \ maximum length 500 chars (is checked)

5.18 Blocks

When you run Gforth on a modern desk-top computer,
it runs under the control of an operating system which
provides certain services. One of these services is file
services, which allows Forth source code and data to be
stored in files and read into Gforth (see Section 5.17 [Files],
page 220).

Traditionally, Forth has been an important program-
ming language on systems where it has interfaced directly
to the underlying hardware with no intervening operating
system. Forth provides a mechanism, called blocks, for
accessing mass storage on such systems.

A block is a 1024-byte data area, which can be used to
hold data or Forth source code. No structure is imposed
on the contents of the block. A block is identified by its
number; blocks are numbered contiguously from 1 to an
implementation-defined maximum.

A typical system that used blocks but no operating
system might use a single floppy-disk drive for mass stor-
age, with the disks formatted to provide 256-byte sectors.
Blocks would be implemented by assigning the first four
sectors of the disk to block 1, the second four sectors to
block 2 and so on, up to the limit of the capacity of the

Chapter 5: Forth Words 231

disk. The disk would not contain any file system informa-
tion, just the set of blocks.

On systems that do provide file services, blocks are typ-
ically implemented by storing a sequence of blocks within
a single blocks file. The size of the blocks file will be an
exact multiple of 1024 bytes, corresponding to the number
of blocks it contains. This is the mechanism that Gforth
uses.

Only one blocks file can be open at a time. If you use
block words without having specified a blocks file, Gforth
defaults to the blocks file blocks.fb. Gforth uses the
Forth search path when attempting to locate a blocks file
(see Section 5.17.5.1 [Source Search Paths], page 229).

When you read and write blocks under program con-
trol, Gforth uses a number of block buffers as intermediate
storage. These buffers are not used when you use load to
interpret the contents of a block.

The behaviour of the block buffers is analagous to that
of a cache. Each block buffer has three states:

• Unassigned

• Assigned-clean

• Assigned-dirty

Initially, all block buffers are unassigned. In order to
access a block, the block (specified by its block number)
must be assigned to a block buffer.

The assignment of a block to a block buffer is performed
by block or buffer. Use block when you wish to modify

Chapter 5: Forth Words 232

the existing contents of a block. Use buffer when you
don’t care about the existing contents of the block22.

Once a block has been assigned to a block buffer using
block or buffer, that block buffer becomes the current
block buffer. Data may only be manipulated (read or writ-
ten) within the current block buffer.

When the contents of the current block buffer has been
modified it is necessary, before calling block or buffer

again, to either abandon the changes (by doing nothing) or
mark the block as changed (assigned-dirty), using update.
Using update does not change the blocks file; it simply
changes a block buffer’s state to assigned-dirty. The block
will be written implicitly when it’s buffer is needed for
another block, or explicitly by flush or save-buffers.

word Flush writes all assigned-dirty blocks back to the
blocks file on disk. Leaving Gforth with bye also performs
a flush.

In Gforth, block and buffer use a direct-mapped algo-
rithm to assign a block buffer to a block. That means that
any particular block can only be assigned to one specific
block buffer, called (for the particular operation) the vic-
tim buffer. If the victim buffer is unassigned or assigned-
clean it is allocated to the new block immediately. If it is
assigned-dirty its current contents are written back to the
blocks file on disk before it is allocated to the new block.

22 The Standard Forth definition of buffer is intended not to cause
disk I/O; if the data associated with the particular block is al-
ready stored in a block buffer due to an earlier block command,
buffer will return that block buffer and the existing contents of
the block will be available. Otherwise, buffer will simply assign
a new, empty block buffer for the block.

Chapter 5: Forth Words 233

Although no structure is imposed on the contents of a
block, it is traditional to display the contents as 16 lines
each of 64 characters. A block provides a single, continu-
ous stream of input (for example, it acts as a single parse
area) – there are no end-of-line characters within a block,
and no end-of-file character at the end of a block. There
are two consequences of this:

• The last character of one line wraps straight into the
first character of the following line

• The word \ – comment to end of line – requires special
treatment; in the context of a block it causes all char-
acters until the end of the current 64-character “line”
to be ignored.

In Gforth, when you use block with a non-existent
block number, the current blocks file will be extended to
the appropriate size and the block buffer will be initialised
with spaces.

Gforth includes a simple block editor (type use

blocked.fb 0 list for details) but doesn’t encourage
the use of blocks; the mechanism is only provided for
backward compatibility.

Common techniques that are used when working with
blocks include:

• A screen editor that allows you to edit blocks without
leaving the Forth environment.

• Shadow screens; where every code block has an asso-
ciated block containing comments (for example: code
in odd block numbers, comments in even block num-
bers). Typically, the block editor provides a convenient
mechanism to toggle between code and comments.

Chapter 5: Forth Words 234

• Load blocks; a single block (typically block 1) contains
a number of thru commands which load the whole of
the application.

See Frank Sergeant’s Pygmy Forth to see just how well
blocks can be integrated into a Forth programming envi-
ronment.

open-blocks (c-addr u –) gforth “open-blocks”

Use the file, whose name is given by c-addr u, as the
blocks file.

use ("file" –) gforth “use”

Use file as the blocks file.

block-offset (– addr) gforth “block-offset”

User variable containing the number of the first block
(default since 0.5.0: 0). Block files created with Gforth
versions before 0.5.0 have the offset 1. If you use these
files you can: 1 offset !; or add 1 to every block number
used; or prepend 1024 characters to the file.

get-block-fid (– wfileid) gforth “get-block-fid”

Return the file-id of the current blocks file. If no blocks
file has been opened, use blocks.fb as the default blocks
file.

block-position (u –) block “block-position”

Position the block file to the start of block u.

list (u –) block-ext “list”

Display block u. In Gforth, the block is displayed as 16
numbered lines, each of 64 characters.

scr (– a-addr) block-ext “s-c-r”

User variable containing the block number of the block
most recently processed by list.

block (u – a-addr) block “block”

Chapter 5: Forth Words 235

If a block buffer is assigned for block u, return its start
address, a-addr. Otherwise, assign a block buffer for block
u (if the assigned block buffer has been updated, transfer
the contents to mass storage), read the block into the block
buffer and return its start address, a-addr.

buffer (u – a-addr) block “buffer”

If a block buffer is assigned for block u, return its start
address, a-addr. Otherwise, assign a block buffer for block
u (if the assigned block buffer has been updated, transfer
the contents to mass storage) and return its start address,
a-addr. The subtle difference between buffer and block

mean that you should only use buffer if you don’t care
about the previous contents of block u. In Gforth, this
simply calls block.

empty-buffers (–) block-ext “empty-buffers”

Mark all block buffers as unassigned; if any had been
marked as assigned-dirty (by update), the changes to those
blocks will be lost.

empty-buffer (buffer –) gforth “empty-buffer”

update (–) block “update”

Mark the state of the current block buffer as assigned-
dirty.

updated? (n – f) gforth “updated?”

Return true if updated has been used to mark block n
as assigned-dirty.

save-buffers (–) block “save-buffers”

Transfer the contents of each updated block buffer to
mass storage, then mark all block buffers as assigned-clean.

save-buffer (buffer –) gforth “save-buffer”

flush (–) block “flush”

Chapter 5: Forth Words 236

Perform the functions of save-buffers then
empty-buffers.

load (i*x u – j*x) block “load”

Text-interpret block u. Block 0 cannot be loaded.

thru (i*x n1 n2 – j*x) block-ext “thru”

load the blocks n1 through n2 in sequence.

+load (i*x n – j*x) gforth “+load”

Used within a block to load the block specified as the
current block + n.

+thru (i*x n1 n2 – j*x) gforth “+thru”

Used within a block to load the range of blocks specified
as the current block + n1 thru the current block + n2.

--> (–) gforth “chain”

If this symbol is encountered whilst loading block n, dis-
card the remainder of the block and load block n+1. Used
for chaining multiple blocks together as a single loadable
unit. Not recommended, because it destroys the indepen-
dence of loading. Use thru (which is standard) or +thru
instead.

block-included (a-addr u –) gforth “block-included”

Use within a block that is to be processed by load.
Save the current blocks file specification, open the blocks
file specified by a-addr u and load block 1 from that file
(which may in turn chain or load other blocks). Finally,
close the blocks file and restore the original blocks file.

5.19 Other I/O

Chapter 5: Forth Words 237

5.19.1 Simple numeric output

The simplest output functions are those that display num-
bers from the data or floating-point stacks. Floating-point
output is always displayed using base 10. Numbers dis-
played from the data stack use the value stored in base.

. (n –) core “dot”

Display (the signed single number) n in free-format,
followed by a space.

dec. (n –) gforth “dec.”

Display n as a signed decimal number, followed by a
space.

hex. (u –) gforth “hex.”

Display u as an unsigned hex number, prefixed with a
"$" and followed by a space.

u. (u –) core “u-dot”

Display (the unsigned single number) u in free-format,
followed by a space.

.r (n1 n2 –) core-ext “dot-r”

Display n1 right-aligned in a field n2 characters wide. If
more than n2 characters are needed to display the number,
all digits are displayed. If appropriate, n2 must include a
character for a leading “-”.

u.r (u n –) core-ext “u-dot-r”

Display u right-aligned in a field n characters wide. If
more than n characters are needed to display the number,
all digits are displayed.

d. (d –) double “d-dot”

Display (the signed double number) d in free-format.
followed by a space.

ud. (ud –) gforth “u-d-dot”

Chapter 5: Forth Words 238

Display (the signed double number) ud in free-format,
followed by a space.

d.r (d n –) double “d-dot-r”

Display d right-aligned in a field n characters wide. If
more than n characters are needed to display the number,
all digits are displayed. If appropriate, n must include a
character for a leading “-”.

ud.r (ud n –) gforth “u-d-dot-r”

Display ud right-aligned in a field n characters wide. If
more than n characters are needed to display the number,
all digits are displayed.

f. (r –) float-ext “f-dot”

Display (the floating-point number) r without expo-
nent, followed by a space.

fe. (r –) float-ext “f-e-dot”

Display r using engineering notation (with exponent
dividable by 3), followed by a space.

fs. (r –) gforth “f-s-dot”

Display r using scientific notation (with exponent), fol-
lowed by a space.

fp. (r –) float-ext “f-e-dot”

Display r using SI prefix notation (with exponent divid-
able by 3, converted into SI prefixes if available), followed
by a space.

Examples of printing the number 1234.5678E23 in the
different floating-point output formats are shown below.

f. 123456780000000000000000000.

fe. 123.456780000000E24

fs. 1.23456780000000E26

Chapter 5: Forth Words 239

fp. 123.456780000000Y

precision (– u) float-ext “precision”

u is the number of significant digits currently used by
F. FE. and FS.

set-precision (u –) float-ext “set-precision”

Set the number of significant digits currently used by
F. FE. and FS. to u.

f.rdp (rf +nr +nd +np –) gforth “f.rdp”

Print float rf formatted. The total width of the out-
put is nr. For fixed-point notation, the number of digits
after the decimal point is +nd and the minimum number
of significant digits is np. Set-precision has no effect on
f.rdp. Fixed-point notation is used if the number of sigini-
cant digits would be at least np and if the number of digits
before the decimal point would fit. If fixed-point notation
is not used, exponential notation is used, and if that does
not fit, asterisks are printed. We recommend using nr>=7
to avoid the risk of numbers not fitting at all. We recom-
mend nr>=np+5 to avoid cases where f.rdp switches to
exponential notation because fixed-point notation would
have too few significant digits, yet exponential notation
offers fewer significant digits. We recommend nr>=nd+2,
if you want to have fixed-point notation for some numbers;
the smaller the value of np, the more cases are shown in
fixed-point notation (cases where few or no significant dig-
its remain in fixed-point notation). We recommend np>nr,
if you want to have exponential notation for all numbers.

For f.rdp the output depends on the parameters. To
give you a better intuition of how they influence the out-
put, here are some examples of parameter combinations;

Chapter 5: Forth Words 240

in each line the same number is printed, in each column
the same parameter combination is used for printing:

12 13 0 7 3 4 7 3 0 7 3 1 7 5 1 7 7 1 7 0 2 4 2 1

|-1.234568E-6|-1.2E-6| -0.000|-1.2E-6|-1.2E-6|-1.2E-6|-1.2E-6|****|

|-1.234568E-5|-1.2E-5| -0.000|-1.2E-5|-.00001|-1.2E-5|-1.2E-5|****|

|-1.234568E-4|-1.2E-4| -0.000|-1.2E-4|-.00012|-1.2E-4|-1.2E-4|****|

|-1.234568E-3|-1.2E-3| -0.001| -0.001|-.00123|-1.2E-3|-1.2E-3|****|

|-1.234568E-2|-1.2E-2| -0.012| -0.012|-.01235|-1.2E-2|-1.2E-2|-.01|

|-1.234568E-1|-1.2E-1| -0.123| -0.123|-.12346|-1.2E-1|-1.2E-1|-.12|

|-1.2345679E0| -1.235| -1.235| -1.235|-1.23E0|-1.23E0|-1.23E0|-1E0|

|-1.2345679E1|-12.346|-12.346|-12.346|-1.23E1|-1.23E1| -12.|-1E1|

|-1.2345679E2|-1.23E2|-1.23E2|-1.23E2|-1.23E2|-1.23E2| -123.|-1E2|

|-1.2345679E3|-1.23E3|-1.23E3|-1.23E3|-1.23E3|-1.23E3| -1235.|-1E3|

|-1.2345679E4|-1.23E4|-1.23E4|-1.23E4|-1.23E4|-1.23E4|-12346.|-1E4|

|-1.2345679E5|-1.23E5|-1.23E5|-1.23E5|-1.23E5|-1.23E5|-1.23E5|-1E5|

5.19.2 Formatted numeric output

Forth traditionally uses a technique called pictured nu-
meric output for formatted printing of integers. In this
technique, digits are extracted from the number (using the
current output radix defined by base), converted to ASCII
codes and appended to a string that is built in a scratch-
pad area of memory (see Section 8.1.1 [Implementation-
defined options], page 393). Arbitrary characters can be
appended to the string during the extraction process. The
completed string is specified by an address and length and
can be manipulated (TYPEed, copied, modified) under pro-
gram control.

All of the integer output words described in the pre-
vious section (see Section 5.19.1 [Simple numeric output],
page 237) are implemented in Gforth using pictured nu-
meric output.

Chapter 5: Forth Words 241

Three important things to remember about pictured
numeric output:

• It always operates on double-precision numbers; to
display a single-precision number, convert it first (for
ways of doing this see Section 5.5.2 [Double precision],
page 97).

• It always treats the double-precision number as though
it were unsigned. The examples below show ways of
printing signed numbers.

• The string is built up from right to left; least significant
digit first.

<# (–) core “less-number-sign”

Initialise/clear the pictured numeric output string.

<<# (–) gforth “less-less-number-sign”

Start a hold area that ends with #>>. Can be nested in
each other and in <#. Note: if you do not match up the
<<#s with #>>s, you will eventually run out of hold area;
you can reset the hold area to empty with <#.

(ud1 – ud2) core “number-sign”

Used within <# and #>. Add the next least-significant
digit to the pictured numeric output string. This is
achieved by dividing ud1 by the number in base to leave
quotient ud2 and remainder n; n is converted to the ap-
propriate display code (eg ASCII code) and appended to
the string. If the number has been fully converted, ud1
will be 0 and # will append a “0” to the string.

#s (ud – 0 0) core “number-sign-s”

Used within <# and #>. Convert all remaining digits
using the same algorithm as for #. #s will convert at least

Chapter 5: Forth Words 242

one digit. Therefore, if ud is 0, #s will append a “0” to
the pictured numeric output string.

hold (char –) core “hold”

Used within <# and #>. Append the character char to
the pictured numeric output string.

sign (n –) core “sign”

Used within <# and #>. If n (a single number) is neg-
ative, append the display code for a minus sign to the
pictured numeric output string. Since the string is built
up “backwards” this is usually used immediately prior to
#>, as shown in the examples below.

#> (xd – addr u) core “number-sign-greater”

Complete the pictured numeric output string by dis-
carding xd and returning addr u; the address and length
of the formatted string. A Standard program may modify
characters within the string.

#>> (–) gforth “number-sign-greater-greater”

Release the hold area started with <<#.

represent (r c-addr u – n f1 f2) float “represent”

f>str-rdp (rf +nr +nd +np – c-addr nr) gforth “f>str-
rdp”

Convert rf into a string at c-addr nr. The conversion
rules and the meanings of nr +nd np are the same as for
f.rdp. The result in in the pictured numeric output buffer
and will be destroyed by anything destroying that buffer.

f>buf-rdp (rf c-addr +nr +nd +np –) gforth “f>buf-rdp”

Convert rf into a string at c-addr nr. The conversion
rules and the meanings of nr nd np are the same as for
f.rdp.

Chapter 5: Forth Words 243

Here are some examples of using pictured numeric output:

: my-u. (u --)

\ Simplest use of pns.. behaves like Standard u.

0 \ convert to unsigned double

<<# \ start conversion

#s \ convert all digits

#> \ complete conversion

TYPE SPACE \ display, with trailing space

#>> ; \ release hold area

: cents-only (u --)

0 \ convert to unsigned double

<<# \ start conversion

\ convert two least-significant digits

#> \ complete conversion, discard other digits

TYPE SPACE \ display, with trailing space

#>> ; \ release hold area

: dollars-and-cents (u --)

0 \ convert to unsigned double

<<# \ start conversion

\ convert two least-significant digits

[char] . hold \ insert decimal point

#s \ convert remaining digits

[char] $ hold \ append currency symbol

#> \ complete conversion

TYPE SPACE \ display, with trailing space

#>> ; \ release hold area

: my-. (n --)

\ handling negatives.. behaves like Standard .

s>d \ convert to signed double

Chapter 5: Forth Words 244

swap over dabs \ leave sign byte followed by unsigned double

<<# \ start conversion

#s \ convert all digits

rot sign \ get at sign byte, append "-" if needed

#> \ complete conversion

TYPE SPACE \ display, with trailing space

#>> ; \ release hold area

: account. (n --)

\ accountants don’t like minus signs, they use parentheses

\ for negative numbers

s>d \ convert to signed double

swap over dabs \ leave sign byte followed by unsigned double

<<# \ start conversion

2 pick \ get copy of sign byte

0< IF [char]) hold THEN \ right-most character of output

#s \ convert all digits

rot \ get at sign byte

0< IF [char] (hold THEN

#> \ complete conversion

TYPE SPACE \ display, with trailing space

#>> ; \ release hold area

Here are some examples of using these words:

1 my-u. 1

hex -1 my-u. decimal FFFFFFFF

1 cents-only 01

1234 cents-only 34

2 dollars-and-cents $0.02

1234 dollars-and-cents $12.34

123 my-. 123

-123 my. -123

Chapter 5: Forth Words 245

123 account. 123

-456 account. (456)

5.19.3 String Formats

Forth commonly uses two different methods for represent-
ing character strings:

• As a counted string, represented by a c-addr. The char
addressed by c-addr contains a character-count, n, of
the string and the string occupies the subsequent n char
addresses in memory.

• As cell pair on the stack; c-addr u, where u is the length
of the string in characters, and c-addr is the address of
the first byte of the string.

Standard Forth encourages the use of the cell pair for-
mat when representing strings.

count (c-addr1 – c-addr2 u) core “count”

c-addr2 is the first character and u the length of the
counted string at c-addr1.

For words that move, copy and search for strings see
Section 5.7.6 [Memory Blocks], page 126. For words that
display characters and strings see Section 5.19.4 [Display-
ing characters and strings], page 245.

5.19.4 Displaying characters and strings

This section starts with a glossary of Forth words and ends
with a set of examples.

bl (– c-char) core “b-l”

c-char is the character value for a space.

space (–) core “space”

Chapter 5: Forth Words 246

Display one space.

spaces (u –) core “spaces”

Display n spaces.

emit (c –) core “emit”

Display the character associated with character value
c.

toupper (c1 – c2) gforth “toupper”

If c1 is a lower-case character (in the current locale), c2
is the equivalent upper-case character. All other characters
are unchanged.

." (compilation ’ccc"’ – ; run-time –) core “dot-quote”

Compilation: Parse a string ccc delimited by a " (dou-
ble quote). At run-time, display the string. Interpreta-
tion semantics for this word are undefined in ANS Forth.
Gforth’s interpretation semantics are to display the string.
This is the simplest way to display a string from within a
definition; see examples below.

.((compilation&interpretation "ccc<paren>" –) core-
ext “dot-paren”

Compilation and interpretation semantics: Parse a
string ccc delimited by a) (right parenthesis). Display
the string. This is often used to display progress informa-
tion during compilation; see examples below.

.\" (compilation ’ccc"’ – ; run-time –) gforth “dot-
backslash-quote”

Like .", but translates C-like \-escape-sequences (see
S\").

type (c-addr u –) core “type”

Chapter 5: Forth Words 247

If u>0, display u characters from a string starting with
the character stored at c-addr.

typewhite (addr n –) gforth “typewhite”

Like type, but white space is printed instead of the
characters.

cr (–) core “c-r”

Output a newline (of the favourite kind of the host
OS). Note that due to the way the Forth command line
interpreter inserts newlines, the preferred way to use cr is
at the start of a piece of text; e.g., cr ." hello, world".

S" (compilation ’ccc"’ – ; run-time – c-addr u) core,file “s-
quote”

Compilation: Parse a string ccc delimited by a " (dou-
ble quote). At run-time, return the length, u, and the start
address, c-addr of the string. Interpretation: parse the
string as before, and return c-addr, u. Gforth allocates
the string. The resulting memory leak is usually not a
problem; the exception is if you create strings containing
S" and evaluate them; then the leak is not bounded by
the size of the interpreted files and you may want to free

the strings. Forth-2012 only guarantees two buffers of 80
characters each, so in standard programs you should as-
sume that the string lives only until the next-but-one s".

s\" (compilation ’ccc"’ – ; run-time – c-addr u) gforth “s-
backslash-quote”

Like S", but translates C-like \-escape-sequences, as
follows: \a BEL (alert), \b BS, \e ESC (not in C99), \f
FF, \n newline, \r CR, \t HT, \v VT, \" ", \\ \, \[0-
7]{1,3} octal numerical character value (non-standard),
\x[0-9a-f]{0,2} hex numerical character value (standard
only with two digits), \u[0-9a-f]{4} for unicode codepoints

Chapter 5: Forth Words 248

(auto-merges surrogate pairs), \U[0-9a-f]{8} for extended
unicode code points; a \ before any other character is re-
served.
Note that \xXX produces raw bytes, while \uXXXX and
\UXXXXXXXX produce code points for the current en-
coding. E.g., if we use UTF-8 encoding and want to en-
code ä (code point U+00E4), you can write the letter ä
itself, or write \xc3\xa4 (the UTF-8 bytes for this code
point), \u00e4, or \U000000e4.

C" (compilation "ccc<quote>" – ; run-time – c-addr) core-
ext “c-quote”

Compilation: parse a string ccc delimited by a " (dou-
ble quote). At run-time, return c-addr which specifies the
counted string ccc. Interpretation semantics are undefined.

char (’<spaces>ccc’ – c) core “char”

Skip leading spaces. Parse the string ccc and return c,
the display code representing the first character of ccc.

[char] (compilation ’<spaces>ccc’ – ; run-time – c) core “bracket-
char”

Compilation: skip leading spaces. Parse the string ccc.
Run-time: return c, the display code representing the first
character of ccc. Interpretation semantics for this word are
undefined.

As an example, consider the following text, stored in a file
test.fs:

.(text-1)

: my-word

." text-2" cr

.(text-3)

;

Chapter 5: Forth Words 249

." text-4"

: my-char

[char] ALPHABET emit

char emit

;

When you load this code into Gforth, the following out-
put is generated:

include test.fs RET text-1text-3text-4 ok

• Messages text-1 and text-3 are displayed because
.(is an immediate word; it behaves in the same way
whether it is used inside or outside a colon definition.

• Message text-4 is displayed because of Gforth’s added
interpretation semantics for .".

• Message text-2 is not displayed, because the text in-
terpreter performs the compilation semantics for ."

within the definition of my-word.

Here are some examples of executing my-word and
my-char:

my-word RET text-2

ok

my-char fred RET Af ok

my-char jim RET Aj ok

• Message text-2 is displayed because of the run-time
behaviour of .".

• [char] compiles the “A” from “ALPHABET” and puts
its display code on the stack at run-time. emit always
displays the character when my-char is executed.

• char parses a string at run-time and the second emit

displays the first character of the string.

Chapter 5: Forth Words 250

• If you type see my-char you can see that [char] dis-
carded the text “LPHABET” and only compiled the
display code for “A” into the definition of my-char.

5.19.5 String words

The following string library stores strings in ordinary vari-
ables, which then contain a pointer to a cell-counted string
allocated from the heap. The string library originates from
bigFORTH.

delete (buffer size u –) gforth-string “delete”

deletes the first u bytes from a buffer and fills the rest
at the end with blanks.

insert (string length buffer size –) gforth-string “insert”

inserts a string at the front of a buffer. The remaining
bytes are moved on.

$! (addr1 u $addr –) gforth-string “string-store”

stores a newly allocated string buffer at an address,
frees the previous buffer if necessary.

$@ ($addr – addr2 u) gforth-string “string-fetch”

returns the stored string.

$@len ($addr – u) gforth-string “string-fetch-len”

returns the length of the stored string.

$!len (u $addr –) gforth-string “string-store-len”

changes the length of the stored string. Therefore we
must change the memory area and adjust address and
count cell as well.

$+!len (u $addr – addr) unknown “$+!len”

make room for u bytes at the end of the memory area
referenced by $addr; addr is the address of the first of these
bytes.

Chapter 5: Forth Words 251

$del (addr off u –) gforth-string “string-del”

deletes u bytes from a string with offset off.

$ins (addr1 u $addr off –) gforth-string “string-ins”

inserts a string at offset off.

$+! (addr1 u $addr –) gforth-string “string-plus-store”

appends a string to another.

c$+! (char $addr –) gforth-string “c-string-plus-store”

append a character to a string.

$free ($addr –) gforth-string “string-free”

free the string pointed to by addr, and set addr to 0

$init ($addr –) unknown “$init”

store an empty string there, regardless of what was in
before

$split (addr u char – addr1 u1 addr2 u2) gforth-
string “string-split”

divides a string into two, with one char as separator
(e.g. ’?’ for arguments in an HTML query)

$iter (.. $addr char xt – ..) gforth-string “string-iter”

takes a string apart piece for piece, also with a character
as separator. For each part a passed token will be called.
With this you can take apart arguments – separated with
’&’ – at ease.

$over (addr u $addr off –) unknown “$over”

overwrite string at offset off with addr u

$exec (xt addr –) unknown “$exec”

execute xt while the standard output (TYPE, EMIT,
and everything that uses them) is appended to the string
variable addr.

$tmp (xt – addr u) unknown “$tmp”

Chapter 5: Forth Words 252

generate a temporary string from the output of a word

$. (addr –) unknown “$.”

print a string, shortcut

$slurp (fid addr –) unknown “$slurp”

slurp a file fid into a string addr2

$slurp-file (addr1 u1 addr2 –) unknown “$slurp-file”

slurp a named file addr1 u1 into a string addr2

$[] (u $[]addr – addr’) unknown “$[]”

index into the string array and return the address at
index u The array will be resized as needed

$[]! (addr u n $[]addr –) gforth “string-array-store”

store a string into an array at index n

$[]+! (addr u n $[]addr –) gforth “string-array-plus-
store”

add a string to the string at index n

$[]@ (n $[]addr – addr u) gforth “string-array-fetch”

fetch a string from array index n — return the zero
string if empty, and don’t accidentally grow the array.

$[]# (addr – len) gforth “string-array-num”

return the number of elements in an array

$[]map (addr xt –) unknown “$[]map”

execute xt for all elements of the string array addr. xt
is (addr u –), getting one string at a time

$[]slurp (fid addr –) unknown “$[]slurp”

slurp a file fid line by line into a string array addr

$[]slurp-file (addr u $addr –) unknown “$[]slurp-file”

Chapter 5: Forth Words 253

slurp a named file addr u line by line into a string array
$addr

$[]. (addr –) unknown “$[].”

print all array entries

$[]free (addr –) unknown “$[]free”

addr contains the address of a cell-counted string that
contains the addresses of a number of cell-counted strings;
$[]free frees these strings, frees the array, and sets addr to
0

$save ($addr –) unknown “$save”

push string to dictionary for savesys

$[]save (addr –) unknown “$[]save”

push string array to dictionary for savesys

$boot ($addr –) unknown “$boot”

take string from dictionary to allocated memory. clean
dictionary afterwards.

$[]boot (addr –) unknown “$[]boot”

take string array from dictionary to allocated memory

$saved (addr –) unknown “$saved”

$[]saved (addr –) unknown “$[]saved”

$Variable (–) unknown “$Variable”

A string variable which is preserved across savesystem

$[]Variable (–) unknown “$[]Variable”

A string variable which is preserved across savesystem

Chapter 5: Forth Words 254

5.19.6 Terminal output

If you are outputting to a terminal, you may want to con-
trol the positioning of the cursor:

at-xy (x y –) unknown “at-xy”

In order to know where to position the cursor, it is often
helpful to know the size of the screen:

form () unknown “form”

And sometimes you want to use:

page (–) unknown “page”

Note that on non-terminals you should use 12 emit,
not page, to get a form feed.

5.19.6.1 Color output

The following words are used to create (semantic) colorful
output:

default-color (–) gforth “default-color”

use system-default color

error-color (–) gforth “error-color”

error color: red

warning-color (–) gforth “warning-color”

color for warnings: blue/yellow on black terminals

info-color (–) gforth “info-color”

color for info: green/cyan on black terminals

success-color (–) gforth “success-color”

color for success: green

attr! (attr –) gforth “attr!”

apply attribute to terminal (i.e. set color)

doc-color-execute

Chapter 5: Forth Words 255

5.19.6.2 Color themes

Depending on wether you prefer bright or dark background
the foreground colors-theme can be changed by:

doc-white-colors doc-black-colors

5.19.7 Single-key input

If you want to get a single printable character, you can use
key; to check whether a character is available for key, you
can use key?.

key (– char) unknown “key”

Receive (but do not display) one character, char.

key? (– flag) facility “key-question”

Determine whether a character is available. If a charac-
ter is available, flag is true; the next call to key will yield
the character. Once key? returns true, subsequent calls to
key? before calling key or ekey will also return true.

If you want to process a mix of printable and non-
printable characters, you can do that with ekey and
friends. Ekey produces a keyboard event that you have
to convert into a character with ekey>char or into a key
identifier with ekey>fkey.

Typical code for using EKEY looks like this:

ekey ekey>char if (c)

... \ do something with the character

else ekey>fkey if (key-id)

case

k-up of ... endof

k-f1 of ... endof

k-left k-shift-mask or k-ctrl-mask or of ... endof

...

Chapter 5: Forth Words 256

endcase

else (keyboard-event)

drop \ just ignore an unknown keyboard event type

then then

ekey (– u) facility-ext “e-key”

Receive a keyboard event u (encoding implementation-
defined).

ekey>char (u – u false | c true) facility-ext “e-key-to-
char”

Convert keyboard event u into character c if possible.

ekey>fkey (u1 – u2 f) X:ekeys “ekey>fkey”

If u1 is a keyboard event in the special key set, con-
vert keyboard event u1 into key id u2 and return true;
otherwise return u1 and false.

ekey? (– flag) facility-ext “e-key-question”

True if a keyboard event is available.

The key identifiers for cursor keys are:

k-left (– u) X:ekeys “k-left”

k-right (– u) X:ekeys “k-right”

k-up (– u) X:ekeys “k-up”

k-down (– u) X:ekeys “k-down”

k-home (– u) X:ekeys “k-home”

aka Pos1

k-end (– u) X:ekeys “k-end”

k-prior (– u) X:ekeys “k-prior”

aka PgUp

k-next (– u) X:ekeys “k-next”

Chapter 5: Forth Words 257

aka PgDn

k-insert (– u) X:ekeys “k-insert”

k-delete (– u) X:ekeys “k-delete”

The key identifiers for function keys (aka keypad keys)
are:

k-f1 (– u) X:ekeys “k-f1”

k-f2 (– u) X:ekeys “k-f2”

k-f3 (– u) X:ekeys “k-f3”

k-f4 (– u) X:ekeys “k-f4”

k-f5 (– u) X:ekeys “k-f5”

k-f6 (– u) X:ekeys “k-f6”

k-f7 (– u) X:ekeys “k-f7”

k-f8 (– u) X:ekeys “k-f8”

k-f9 (– u) X:ekeys “k-f9”

k-f10 (– u) X:ekeys “k-f10”

k-f11 (– u) X:ekeys “k-f11”

k-f12 (– u) X:ekeys “k-f12”

Note that k-f11 and k-f12 are not as widely available.

You can combine these key identifiers with masks for
various shift keys:

k-shift-mask (– u) X:ekeys “k-shift-mask”

k-ctrl-mask (– u) X:ekeys “k-ctrl-mask”

k-alt-mask (– u) X:ekeys “k-alt-mask”

Note that, even if a Forth system has ekey>fkey and
the key identifier words, the keys are not necessarily avail-
able or it may not necessarily be able to report all the keys
and all the possible combinations with shift masks. There-
fore, write your programs in such a way that they are still

Chapter 5: Forth Words 258

useful even if the keys and key combinations cannot be
pressed or are not recognized.

Examples: Older keyboards often do not have an F11
and F12 key. If you run Gforth in an xterm, the xterm
catches a number of combinations (e.g., Shift-Up), and
never passes it to Gforth. Finally, Gforth currently does
not recognize and report combinations with multiple shift
keys (so the shift-ctrl-left case in the example above
would never be entered).

Gforth recognizes various keys available on ANSI termi-
nals (in MS-DOS you need the ANSI.SYS driver to get that
behaviour); it works by recognizing the escape sequences
that ANSI terminals send when such a key is pressed. If
you have a terminal that sends other escape sequences, you
will not get useful results on Gforth. Other Forth systems
may work in a different way.

Gforth also provides a few words for outputting names
of function keys:

fkey. (u –) gforth “fkey-dot”

Print a string representation for the function key u. U
must be a function key (possibly with modifier masks),
otherwise there may be an exception.

simple-fkey-string (u1 – c-addr u) gforth “simple-
fkey-string”

c-addr u is the string name of the function key u1. Only
works for simple function keys without modifier masks.
Any u1 that does not correspond to a simple function key
currently produces an exception.

Chapter 5: Forth Words 259

5.19.8 Line input and conversion

For ways of storing character strings in memory see
Section 5.19.3 [String Formats], page 245.

Words for inputting one line from the keyboard:

accept (c-addr +n1 – +n2) core “accept”

Get a string of up to n1 characters from the user in-
put device and store it at c-addr. n2 is the length of the
received string. The user indicates the end by pressing
RET. Gforth supports all the editing functions available
on the Forth command line (including history and word
completion) in accept.

edit-line (c-addr n1 n2 – n3) gforth “edit-line”

edit the string with length n2 in the buffer c-addr n1,
like accept.

Conversion words:

s>number? (addr u – d f) gforth “s>number?”

converts string addr u into d, flag indicates success

s>unumber? (c-addr u – ud flag) gforth “s>unumber?”

converts string c-addr u into ud, flag indicates success

>number (ud1 c-addr1 u1 – ud2 c-addr2 u2) core “to-
number”

Attempt to convert the character string c-addr1 u1 to
an unsigned number in the current number base. The dou-
ble ud1 accumulates the result of the conversion to form
ud2. Conversion continues, left-to-right, until the whole
string is converted or a character that is not convertable
in the current number base is encountered (including + or
-). For each convertable character, ud1 is first multiplied
by the value in BASE and then incremented by the value

Chapter 5: Forth Words 260

represented by the character. c-addr2 is the location of
the first unconverted character (past the end of the string
if the whole string was converted). u2 is the number of
unconverted characters in the string. Overflow is not de-
tected.

>float (c-addr u – f:... flag) float “to-float”

Actual stack effect: (c addr u – r t | f). Attempt to
convert the character string c-addr u to internal floating-
point representation. If the string represents a valid
floating-point number, r is placed on the floating-point
stack and flag is true. Otherwise, flag is false. A string of
blanks is a special case and represents the floating-point
number 0.

>float1 (c-addr u c – f:... flag) gforth “to-float1”

Actual stack effect: (c addr u c – r t | f). Attempt to
convert the character string c-addr u to internal floating-
point representation, with c being the decimal separator.
If the string represents a valid floating-point number, r is
placed on the floating-point stack and flag is true. Other-
wise, flag is false. A string of blanks is a special case and
represents the floating-point number 0.

Obsolescent input and conversion words:

convert (ud1 c-addr1 – ud2 c-addr2) core-ext-obsolescent “convert”

Obsolescent: superseded by >number.

expect (c-addr +n –) core-ext-obsolescent “expect”

Receive a string of at most +n characters, and store
it in memory starting at c-addr. The string is displayed.
Input terminates when the <return> key is pressed or +n
characters have been received. The normal Gforth line
editing capabilites are available. The length of the string is

Chapter 5: Forth Words 261

stored in span; it does not include the <return> character.
OBSOLESCENT: superceeded by accept.

span (– c-addr) core-ext-obsolescent “span”

Variable – c-addr is the address of a cell that stores
the length of the last string received by expect. OBSO-
LESCENT.

5.19.9 Pipes

In addition to using Gforth in pipes created by other pro-
cesses (see Section 2.7 [Gforth in pipes], page 14), you can
create your own pipe with open-pipe, and read from or
write to it.

open-pipe (c-addr u wfam – wfileid wior) gforth “open-
pipe”

close-pipe (wfileid – wretval wior) gforth “close-pipe”

If you write to a pipe, Gforth can throw a
broken-pipe-error; if you don’t catch this excep-
tion, Gforth will catch it and exit, usually silently (see
Section 2.7 [Gforth in pipes], page 14). Since you probably
do not want this, you should wrap a catch or try block
around the code from open-pipe to close-pipe, so you
can deal with the problem yourself, and then return to
regular processing.

broken-pipe-error (– n) gforth “broken-pipe-error”

the error number for a broken pipe

5.19.10 Xchars and Unicode

ASCII is only appropriate for the English language. Most
western languages however fit somewhat into the Forth
frame, since a byte is sufficient to encode the few special
characters in each (though not always the same encoding

Chapter 5: Forth Words 262

can be used; latin-1 is most widely used, though). For
other languages, different char-sets have to be used, sev-
eral of them variable-width. To deal with this problem,
characters are often represented as Unicode codepoints on
the stack, and as UTF-8 byte strings in memory. An Uni-
code codepoint often represents one application-level char-
acter, but Unicode also supports decomposed characters
that consist of several code points, e.g., a base letter and
a combining diacritical mark.

An Unicode codepoint can consume more than one byte
in memory, so we adjust our terminology: A char is a raw
byte in memory or a value in the range 0-255 on the stack.
An xchar (for extended char) stands for one codepoint; it
is represented by one or more bytes in memory and may
have larger values on the stack. ASCII characters are the
same as chars and as xchars: values in the range 0-127,
and a single byte with that value in memory.

When using UTF-8 encoding, all other codepoints take
more than one byte/char. In most cases, you can just treat
such characters as strings in memory and don’t need to use
the following words, but if you want to deal with individual
codepoints, the following words are useful. We currently
have no words for dealing with decomposed characters.

The xchar words add a few data types:

• xc is an extended char (xchar) on the stack. It occupies
one cell, and is a subset of unsigned cell. On 16 bit
systems, only the BMP subset of the Unicode character
set (i.e., codepoints <65536) can be represented on the
stack. If you represent your application characters as
strings at all times, you can avoid this limitation.

• xc-addr is the address of an xchar in memory. Align-

Chapter 5: Forth Words 263

ment requirements are the same as c-addr. The memory
representation of an xchar differs from the stack repre-
sentation, and depends on the encoding used. An xchar
may use a variable number of chars in memory.

• xc-addr u is a buffer of xchars in memory, starting at
xc-addr, u chars (i.e., bytes, not xchars) long.

xc-size (xc – u) xchar-ext “xc-size”

Computes the memory size of the xchar xc in chars.

x-size (xc-addr u1 – u2) xchar “x-size”

Computes the memory size of the first xchar stored at
xc-addr in chars.

xc@+ (xc-addr1 – xc-addr2 xc) xchar-ext “xc-fetch-plus”

Fetchs the xchar xc at xc-addr1. xc-addr2 points to
the first memory location after xc.

xc!+? (xc xc-addr1 u1 – xc-addr2 u2 f) xchar-ext “xc-
store-plus-query”

Stores the xchar xc into the buffer starting at address
xc-addr1, u1 chars large. xc-addr2 points to the first mem-
ory location after xc, u2 is the remaining size of the buffer.
If the xchar xc did fit into the buffer, f is true, otherwise f
is false, and xc-addr2 u2 equal xc-addr1 u1. XC!+? is safe
for buffer overflows, and therefore preferred over XC!+.

xchar+ (xc-addr1 – xc-addr2) xchar-ext “xchar+”

Adds the size of the xchar stored at xc-addr1 to this
address, giving xc-addr2.

xchar- (xc-addr1 – xc-addr2) xchar-ext “xchar-”

Goes backward from xc addr1 until it finds an xchar
so that the size of this xchar added to xc addr2 gives
xc addr1.

Chapter 5: Forth Words 264

+x/string (xc-addr1 u1 – xc-addr2 u2) xchar “plus-x-
slash-string”

Step forward by one xchar in the buffer defined by ad-
dress xc-addr1, size u1 chars. xc-addr2 is the address and
u2 the size in chars of the remaining buffer after stepping
over the first xchar in the buffer.

x\string- (xc-addr u1 – xc-addr u2) xchar “x-back-
string-minus”

Step backward by one xchar in the buffer defined by
address xc-addr and size u1 in chars, starting at the end
of the buffer. xc-addr is the address and u2 the size in
chars of the remaining buffer after stepping backward over
the last xchar in the buffer.

-trailing-garbage (xc-addr u1 – xc-addr u2) xchar-
ext “-trailing-garbage”

Examine the last XCHAR in the buffer xc-addr u1—
if the encoding is correct and it repesents a full char, u2
equals u1, otherwise, u2 represents the string without the
last (garbled) xchar.

x-width (xc-addr u – n) xchar-ext “x-width”

n is the number of monospace ASCII chars that take
the same space to display as the the xchar string starting
at xc-addr, using u chars; assuming a monospaced display
font, i.e. char width is always an integer multiple of the
width of an ASCII char.

xkey (– xc) xchar-ext “xkey”

Reads an xchar from the terminal. This will discard all
input events up to the completion of the xchar.

xemit (xc –) xchar-ext “xemit”

Prints an xchar on the terminal.

Chapter 5: Forth Words 265

There’s a new environment query

xchar-encoding (– addr u) xchar-ext “xchar-encoding”

Returns a printable ASCII string that reperesents the
encoding, and use the preferred MIME name (if any)
or the name in http://www.iana.org/assignments/

character-sets like “ISO-LATIN-1” or “UTF-8”, with
the exception of “ASCII”, where we prefer the alias
“ASCII”.

5.20 OS command line arguments

The usual way to pass arguments to Gforth programs on
the command line is via the -e option, e.g.

gforth -e "123 456" foo.fs -e bye

However, you may want to interpret the command-
line arguments directly. In that case, you can access
the (image-specific) command-line arguments through
next-arg:

next-arg (– addr u) gforth “next-arg”

get the next argument from the OS command line, con-
suming it; if there is no argument left, return 0 0.

Here’s an example program echo.fs for next-arg:

: echo (--)

begin

next-arg 2dup 0 0 d<> while

type space

repeat

2drop ;

echo cr bye

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Chapter 5: Forth Words 266

This can be invoked with

gforth echo.fs hello world

and it will print

hello world

The next lower level of dealing with the OS command
line are the following words:

arg (u – addr count) gforth “arg”

Return the string for the uth command-line argument;
returns 0 0 if the access is beyond the last argument. 0

arg is the program name with which you started Gforth.
The next unprocessed argument is always 1 arg, the one
after that is 2 arg etc. All arguments already processed
by the system are deleted. After you have processed an
argument, you can delete it with shift-args.

shift-args (–) gforth “shift-args”

1 arg is deleted, shifting all following OS command line
parameters to the left by 1, and reducing argc @. This
word can change argv @.

Finally, at the lowest level Gforth provides the following
words:

argc (– addr) gforth “argc”

Variable – the number of command-line arguments
(including the command name). Changed by next-arg

and shift-args.

argv (– addr) gforth “argv”

Variable – a pointer to a vector of pointers to the
command-line arguments (including the command-name).
Each argument is represented as a C-style zero-terminated
string. Changed by next-arg and shift-args.

Chapter 5: Forth Words 267

5.21 Locals

Local variables can make Forth programming more enjoy-
able and Forth programs easier to read. Unfortunately,
the locals of Standard Forth are laden with restrictions.
Therefore, we provide not only the Standard Forth locals
wordset, but also our own, more powerful locals word-
set (we implemented the Standard Forth locals wordset
through our locals wordset).

The ideas in this section have also been published in
M. Anton Ertl, Automatic Scoping of Local Variables
(http://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz),
EuroForth ’94.

5.21.1 Gforth locals

Locals can be defined with

{ local1 local2 ... -- comment }

or

{ local1 local2 ... }

E.g.,

: max { n1 n2 -- n3 }

n1 n2 > if

n1

else

n2

endif ;

The similarity of locals definitions with stack comments
is intended. A locals definition often replaces the stack
comment of a word. The order of the locals corresponds
to the order in a stack comment and everything after the
-- is really a comment.

http://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz

Chapter 5: Forth Words 268

This similarity has one disadvantage: It is too easy to
confuse locals declarations with stack comments, causing
bugs and making them hard to find. However, this prob-
lem can be avoided by appropriate coding conventions: Do
not use both notations in the same program. If you do,
they should be distinguished using additional means, e.g.
by position.

The name of the local may be preceded by a type spec-
ifier, e.g., F: for a floating point value:

: CX* { F: Ar F: Ai F: Br F: Bi -- Cr Ci }

\ complex multiplication

Ar Br f* Ai Bi f* f-

Ar Bi f* Ai Br f* f+ ;

Gforth currently supports cells (W:, W^), doubles (D:,
D^), floats (F:, F^) and characters (C:, C^) in two flavours:
a value-flavoured local (defined with W:, D: etc.) produces
its value and can be changed with TO. A variable-flavoured
local (defined with W^ etc.) produces its address (which
becomes invalid when the variable’s scope is left). E.g.,
the standard word emit can be defined in terms of type
like this:

: emit { C^ char* -- }

char* 1 type ;

A local without type specifier is a W: local. Both
flavours of locals are initialized with values from the data
or FP stack.

Gforth supports the square bracket notation of local
data structures. These locals are similar to variable-
flavored locals, the size is specified as a constant expres-
sion. A declaration looks name[size]. The Forth expres-
sion size is evaluated during declaration, it must have the

Chapter 5: Forth Words 269

stack effect (-- +n), giving the size in bytes. The square
bracket [is part of the defined name.

Local data structures are initialized by copying size
bytes from an address passed on the stack; uninitialized
local data structures (after | in the declaration) are not
erased, they just contain whatever data there was on the
locals stack before.

Example:

begin-structure test-struct

field: a1

field: a2

end-structure

: test-local {: foo[test-struct] :}

foo[a1 ! foo[a2 !

foo[test-struct dump ;

Gforth allows defining locals everywhere in a colon def-
inition. This poses the following questions:

5.21.1.1 Where are locals visible by
name?

Basically, the answer is that locals are visible where you
would expect it in block-structured languages, and some-
times a little longer. If you want to restrict the scope of a
local, enclose its definition in SCOPE...ENDSCOPE.

scope (compilation – scope ; run-time –) gforth “scope”

endscope (compilation scope – ; run-time –) gforth “endscope”

These words behave like control structure words, so you
can use them with CS-PICK and CS-ROLL to restrict the
scope in arbitrary ways.

Chapter 5: Forth Words 270

If you want a more exact answer to the visibility ques-
tion, here’s the basic principle: A local is visible in all
places that can only be reached through the definition of
the local23. In other words, it is not visible in places that
can be reached without going through the definition of the
local. E.g., locals defined in IF...ENDIF are visible until
the ENDIF, locals defined in BEGIN...UNTIL are visible after
the UNTIL (until, e.g., a subsequent ENDSCOPE).

The reasoning behind this solution is: We want to have
the locals visible as long as it is meaningful. The user
can always make the visibility shorter by using explicit
scoping. In a place that can only be reached through the
definition of a local, the meaning of a local name is clear.
In other places it is not: How is the local initialized at
the control flow path that does not contain the definition?
Which local is meant, if the same name is defined twice in
two independent control flow paths?

This should be enough detail for nearly all users, so you
can skip the rest of this section. If you really must know
all the gory details and options, read on.

In order to implement this rule, the compiler has to
know which places are unreachable. It knows this auto-
matically after AHEAD, AGAIN, EXIT and LEAVE; in other
cases (e.g., after most THROWs), you can use the word
UNREACHABLE to tell the compiler that the control flow
never reaches that place. If UNREACHABLE is not used
where it could, the only consequence is that the visibil-
ity of some locals is more limited than the rule above says.

23 In compiler construction terminology, all places dominated by the
definition of the local.

Chapter 5: Forth Words 271

If UNREACHABLE is used where it should not (i.e., if you lie
to the compiler), buggy code will be produced.

UNREACHABLE (–) gforth “UNREACHABLE”

Another problem with this rule is that at BEGIN, the
compiler does not know which locals will be visible on
the incoming back-edge. All problems discussed in the
following are due to this ignorance of the compiler (we
discuss the problems using BEGIN loops as examples; the
discussion also applies to ?DO and other loops). Perhaps
the most insidious example is:

AHEAD

BEGIN

x

[1 CS-ROLL] THEN

{ x }

...

UNTIL

This should be legal according to the visibility rule.
The use of x can only be reached through the definition;
but that appears textually below the use.

From this example it is clear that the visibility rules
cannot be fully implemented without major headaches.
Our implementation treats common cases as advertised
and the exceptions are treated in a safe way: The compiler
makes a reasonable guess about the locals visible after a
BEGIN; if it is too pessimistic, the user will get a spurious
error about the local not being defined; if the compiler is
too optimistic, it will notice this later and issue a warning.
In the case above the compiler would complain about x

being undefined at its use. You can see from the obscure
examples in this section that it takes quite unusual control

Chapter 5: Forth Words 272

structures to get the compiler into trouble, and even then
it will often do fine.

If the BEGIN is reachable from above, the most opti-
mistic guess is that all locals visible before the BEGIN will
also be visible after the BEGIN. This guess is valid for all
loops that are entered only through the BEGIN, in particu-
lar, for normal BEGIN...WHILE...REPEAT and BEGIN...UNTIL
loops and it is implemented in our compiler. When the
branch to the BEGIN is finally generated by AGAIN or UNTIL,
the compiler checks the guess and warns the user if it was
too optimistic:

IF

{ x }

BEGIN

\ x ?

[1 cs-roll] THEN

...

UNTIL

Here, x lives only until the BEGIN, but the compiler
optimistically assumes that it lives until the THEN. It no-
tices this difference when it compiles the UNTIL and issues
a warning. The user can avoid the warning, and make
sure that x is not used in the wrong area by using explicit
scoping:

IF

SCOPE

{ x }

ENDSCOPE

BEGIN

[1 cs-roll] THEN

...

UNTIL

Chapter 5: Forth Words 273

Since the guess is optimistic, there will be no spurious
error messages about undefined locals.

If the BEGIN is not reachable from above (e.g., after
AHEAD or EXIT), the compiler cannot even make an opti-
mistic guess, as the locals visible after the BEGIN may be
defined later. Therefore, the compiler assumes that no lo-
cals are visible after the BEGIN. However, the user can use
ASSUME-LIVE to make the compiler assume that the same
locals are visible at the BEGIN as at the point where the
top control-flow stack item was created.

ASSUME-LIVE (orig – orig) gforth “ASSUME-LIVE”

E.g.,

{ x }

AHEAD

ASSUME-LIVE

BEGIN

x

[1 CS-ROLL] THEN

...

UNTIL

Other cases where the locals are defined before the
BEGIN can be handled by inserting an appropriate CS-ROLL
before the ASSUME-LIVE (and changing the control-flow
stack manipulation behind the ASSUME-LIVE).

Cases where locals are defined after the BEGIN (but
should be visible immediately after the BEGIN) can only
be handled by rearranging the loop. E.g., the “most insid-
ious” example above can be arranged into:

BEGIN

{ x }

... 0=

Chapter 5: Forth Words 274

WHILE

x

REPEAT

5.21.1.2 How long do locals live?

The right answer for the lifetime question would be: A
local lives at least as long as it can be accessed. For a
value-flavoured local this means: until the end of its vis-
ibility. However, a variable-flavoured local could be ac-
cessed through its address far beyond its visibility scope.
Ultimately, this would mean that such locals would have to
be garbage collected. Since this entails un-Forth-like im-
plementation complexities, I adopted the same cowardly
solution as some other languages (e.g., C): The local lives
only as long as it is visible; afterwards its address is invalid
(and programs that access it afterwards are erroneous).

5.21.1.3 Locals programming style

The freedom to define locals anywhere has the potential
to change programming styles dramatically. In particular,
the need to use the return stack for intermediate storage
vanishes. Moreover, all stack manipulations (except PICKs
and ROLLs with run-time determined arguments) can be
eliminated: If the stack items are in the wrong order, just
write a locals definition for all of them; then write the
items in the order you want.

This seems a little far-fetched and eliminating stack ma-
nipulations is unlikely to become a conscious programming
objective. Still, the number of stack manipulations will
be reduced dramatically if local variables are used liber-
ally (e.g., compare max (see Section 5.21.1 [Gforth locals],
page 267) with a traditional implementation of max).

Chapter 5: Forth Words 275

This shows one potential benefit of locals: making
Forth programs more readable. Of course, this benefit
will only be realized if the programmers continue to hon-
our the principle of factoring instead of using the added
latitude to make the words longer.

Using TO can and should be avoided. Without TO, ev-
ery value-flavoured local has only a single assignment and
many advantages of functional languages apply to Forth.
I.e., programs are easier to analyse, to optimize and to
read: It is clear from the definition what the local stands
for, it does not turn into something different later.

E.g., a definition using TO might look like this:

: strcmp { addr1 u1 addr2 u2 -- n }

u1 u2 min 0

?do

addr1 c@ addr2 c@ -

?dup-if

unloop exit

then

addr1 char+ TO addr1

addr2 char+ TO addr2

loop

u1 u2 - ;

Here, TO is used to update addr1 and addr2 at every
loop iteration. strcmp is a typical example of the readabil-
ity problems of using TO. When you start reading strcmp,
you think that addr1 refers to the start of the string. Only
near the end of the loop you realize that it is something
else.

Chapter 5: Forth Words 276

This can be avoided by defining two locals at the start
of the loop that are initialized with the right value for the
current iteration.

: strcmp { addr1 u1 addr2 u2 -- n }

addr1 addr2

u1 u2 min 0

?do { s1 s2 }

s1 c@ s2 c@ -

?dup-if

unloop exit

then

s1 char+ s2 char+

loop

2drop

u1 u2 - ;

Here it is clear from the start that s1 has a different
value in every loop iteration.

5.21.1.4 Locals implementation

Gforth uses an extra locals stack. The most compelling
reason for this is that the return stack is not float-aligned;
using an extra stack also eliminates the problems and re-
strictions of using the return stack as locals stack. Like the
other stacks, the locals stack grows toward lower addresses.
A few primitives allow an efficient implementation:

@local# (#noffset – w) gforth “fetch-local-number”

f@local# (#noffset – r) gforth “f-fetch-local-number”

laddr# (#noffset – c-addr) gforth “laddr-number”

lp+!# (#noffset –) gforth “lp-plus-store-number”

Chapter 5: Forth Words 277

used with negative immediate values it allocates mem-
ory on the local stack, a positive immediate argument
drops memory from the local stack

lp! (c-addr –) gforth “lp-store”

>l (w –) gforth “to-l”

f>l (r –) gforth “f-to-l”

In addition to these primitives, some specializations of
these primitives for commonly occurring inline arguments
are provided for efficiency reasons, e.g., @local0 as special-
ization of @local# for the inline argument 0. The following
compiling words compile the right specialized version, or
the general version, as appropriate:

compile-lp+! (n –) gforth “compile-l-p-plus-store”

Combinations of conditional branches and lp+!# like
?branch-lp+!# (the locals pointer is only changed if the
branch is taken) are provided for efficiency and correctness
in loops.

A special area in the dictionary space is reserved for
keeping the local variable names. { switches the dictionary
pointer to this area and } switches it back and generates
the locals initializing code. W: etc. are normal defining
words. This special area is cleared at the start of every
colon definition.

A special feature of Gforth’s dictionary is used to imple-
ment the definition of locals without type specifiers: every
word list (aka vocabulary) has its own methods for search-
ing etc. (see Section 5.15 [Word Lists], page 210). For
the present purpose we defined a word list with a special
search method: When it is searched for a word, it actually
creates that word using W:. { changes the search order to

Chapter 5: Forth Words 278

first search the word list containing }, W: etc., and then
the word list for defining locals without type specifiers.

The lifetime rules support a stack discipline within a
colon definition: The lifetime of a local is either nested
with other locals lifetimes or it does not overlap them.

At BEGIN, IF, and AHEAD no code for locals stack
pointer manipulation is generated. Between control struc-
ture words locals definitions can push locals onto the locals
stack. AGAIN is the simplest of the other three control flow
words. It has to restore the locals stack depth of the cor-
responding BEGIN before branching. The code looks like
this:

lp+!# current-locals-size − dest-locals-size
branch <begin>

UNTIL is a little more complicated: If it branches back,
it must adjust the stack just like AGAIN. But if it falls
through, the locals stack must not be changed. The com-
piler generates the following code:

?branch-lp+!# <begin> current-locals-size − dest-locals-
size

The locals stack pointer is only adjusted if the branch
is taken.

THEN can produce somewhat inefficient code:

lp+!# current-locals-size − orig-locals-size
<orig target>:
lp+!# orig-locals-size − new-locals-size

The second lp+!# adjusts the locals stack pointer from
the level at the orig point to the level after the THEN. The
first lp+!# adjusts the locals stack pointer from the current
level to the level at the orig point, so the complete effect

Chapter 5: Forth Words 279

is an adjustment from the current level to the right level
after the THEN.

In a conventional Forth implementation a dest control-
flow stack entry is just the target address and an orig entry
is just the address to be patched. Our locals implemen-
tation adds a word list to every orig or dest item. It is
the list of locals visible (or assumed visible) at the point
described by the entry. Our implementation also adds a
tag to identify the kind of entry, in particular to differen-
tiate between live and dead (reachable and unreachable)
orig entries.

A few unusual operations have to be performed on lo-
cals word lists:

common-list (list1 list2 – list3) unknown “common-list”

sub-list? (list1 list2 – f) unknown “sub-list?”

list-size (list – u) gforth-internal “list-size”

Several features of our locals word list implementation
make these operations easy to implement: The locals word
lists are organised as linked lists; the tails of these lists are
shared, if the lists contain some of the same locals; and
the address of a name is greater than the address of the
names behind it in the list.

Another important implementation detail is the vari-
able dead-code. It is used by BEGIN and THEN to determine
if they can be reached directly or only through the branch
that they resolve. dead-code is set by UNREACHABLE,
AHEAD, EXIT etc., and cleared at the start of a colon defi-
nition, by BEGIN and usually by THEN.

Counted loops are similar to other loops in most re-
spects, but LEAVE requires special attention: It performs

Chapter 5: Forth Words 280

basically the same service as AHEAD, but it does not cre-
ate a control-flow stack entry. Therefore the information
has to be stored elsewhere; traditionally, the information
was stored in the target fields of the branches created by
the LEAVEs, by organizing these fields into a linked list.
Unfortunately, this clever trick does not provide enough
space for storing our extended control flow information.
Therefore, we introduce another stack, the leave stack. It
contains the control-flow stack entries for all unresolved
LEAVEs.

Local names are kept until the end of the colon defini-
tion, even if they are no longer visible in any control-flow
path. In a few cases this may lead to increased space needs
for the locals name area, but usually less than reclaiming
this space would cost in code size.

5.21.1.5 Closures

Gforth also provides basic closures. A closure is a com-
bination of a quotation (see Section 5.9.7 [Quotations],
page 160) and locals. Gforth’s closures have locals which
are filled with values at the closure’s run-time, produc-
ing a trampoline xt. When executing that trampoline xt,
the closure’s code is executed, with access to the closure’s
locals on the locals stack. Modifications of the closure’s
locals aren’t persistent, i.e. when the closure EXITs, the
modified values are lost.

[{: (– hmaddr u latest latestnt wid 0) gforth-experimental “start-
closure”

starts a closure. Closures first declare the locals frame
they are going to use, and then the code that is executed
with those locals. Closures end like quotations with a ;].
The locals declaration ends depending where the closure’s

Chapter 5: Forth Words 281

locals are created. At run-time, the closure is created as
trampolin xt, and fills the values of its local frame from
the stack. At execution time of the xt, the local frame
is copied to the locals stack, and used inside the closure’s
code. After return, those values are removed from the
locals stack, and not updated in the closure itself.

:}l (hmaddr u latest latestnt wid 0 a-addr1 u1 ... –
) gforth “close-brace-locals”

end a closure’s locals declaration. The closure will be
allocated on the local’s stack.

:}d (hmaddr u latest latestnt wid 0 a-addr1 u1 ... –
) gforth “close-brace-dictionary”

end a closure’s locals declaration. The closure will be
allocated in the dictionary.

:}h (hmaddr u latest latestnt wid 0 a-addr1 u1 ... –
) gforth “close-brace-heap”

end a closure’s locals declaration. The closure will be
allocated on the heap.

>addr (xt – addr) gforth-experimental “to-addr”

convert the xt of a closure on the heap to the addr with
can be passed to free to get rid of the closure

: foo [{: a f: b d: c xt: d :}d a . b f. c d. d ;] ;

5 3.3e #1234. ’ cr foo execute

foo creates a closure in the dictionary with a single cell,
a floating point, a double, and an xt, and prints the first
three values before executing the xt on invocation.

This allows to implement Donald Knuth’s “Man or boy
test” proposed in 1964 to test Algol compilers.

: A {: w^ k x1 x2 x3 xt: x4 xt: x5 | w^ B :} recursive

k 0<= IF x4 x5 f+ ELSE

Chapter 5: Forth Words 282

B k x1 x2 x3 action-of x4 [{: B k x1 x2 x3 x4 :}L

-1 k +!

k B x1 x2 x3 x4 A ;] dup B !

execute THEN ;

: man-or-boy? (n --) [: 1e ;] [: -1e ;] 2dup swap [: 0e ;] A f. ;

Sometimes, closures need a permanent storage to be
modified; it is even possible that more than one closure
shares that permanent storage. In the example above, lo-
cal variables of the outer procedure are used for this, but
in some cases, the closure lives longer than the outer pro-
cedure; especially closures allocated in the dictionary or on
the heap are designed to outlive their parent procedure.

For those, we have home locations, which are allocated
like closures, but their code is directly executed at run-
time and should provide us with the addresses of the home
locations.

: bar (a b c -- aaddr baddr caddr hl-addr)

<{: w^ a w^ b w^ c :}h a b c ;> ;

This example creates a home location with three cells
on the heap, and returns the addresses of the three loca-
tions and the address of the home location. This address
can be used to free the home location when it is no longer
needed.

<{: (– hmaddr u latest latestnt wid 0) gforth-experimental “start-
homelocation”

starts a home location

;> (–) gforth-experimental “end-homelocation”

end using a home location

Chapter 5: Forth Words 283

5.21.2 Standard Forth locals

The Forth-2012 standard defines a syntax for locals, that
is similar to a subset of Gforth locals. Instead of using {

and }, the standard decided to use {: and :}, as shown in
the following examples:

{: local1 local2 ... -- comment :}

or

{: local1 local2 ... | local3 local4 ... -- comment :}

where local3 and local4 are uninitialized or

{: local1 local2 ... :}

The order of the locals corresponds to the order in a
stack comment. The restrictions are:

• Locals can only be cell-sized values (no type specifiers
are allowed).

• Locals can be defined only outside control structures.

• Locals can interfere with explicit usage of the return
stack. For the exact (and long) rules, see the standard.
If you don’t use return stack accessing words in a defi-
nition using locals, you will be all right. The purpose of
this rule is to make locals implementation on the return
stack easier.

• The whole definition must be in one line.

Locals defined in Standard Forth behave like VALUEs
(see Section 5.9.4 [Values], page 158). I.e., they are ini-
tialized from the stack. Using their name produces their
value. Their value can be changed using TO.

Since the syntax above is supported by Gforth directly,
you need not do anything to use it. If you want to port a
program using this syntax to another ANS Forth system,

Chapter 5: Forth Words 284

use compat/anslocal.fs to implement the syntax on the
other system.

Note that a syntax shown in the standard, section A.13
looks similar, but is quite different in having the order of
locals reversed. Beware!

The Standard Forth locals wordset itself consists of two
words:

(local) (addr u –) local “paren-local-paren”

{: (– hmaddr u latest latestnt wid 0) forth-2012 “open-
brace-colon”

Start standard locals declaration. All Gforth locals ex-
tensions are supported by Gforth, though the standard
only supports the subset of cells.

The ANS Forth locals extension wordset defines a syn-
tax using locals|, but it is so awful that we strongly rec-
ommend not to use it. We have implemented this syntax
to make porting to Gforth easy, but do not document it
here. The problem with this syntax is that the locals are
defined in an order reversed with respect to the standard
stack comment notation, making programs harder to read,
and easier to misread and miswrite. The only merit of this
syntax is that it is easy to implement using the ANS Forth
locals wordset.

5.22 Structures

This section presents the structure package that comes
with Gforth. A version of the package implemented in
Standard Forth is available in compat/struct.fs. This
package was inspired by a posting on comp.lang.forth in
1989 (unfortunately I don’t remember, by whom; possi-
bly John Hayes). A version of this section has been pub-

Chapter 5: Forth Words 285

lished in M. Anton Ertl, Yet Another Forth Structures
Package (http://www.complang.tuwien.ac.at/forth/
objects/structs.html), Forth Dimensions 19(3), pages
13–16. Marcel Hendrix provided helpful comments.

5.22.1 Why explicit structure support?

If we want to use a structure containing several fields, we
could simply reserve memory for it, and access the fields
using address arithmetic (see Section 5.7.5 [Address arith-
metic], page 123). As an example, consider a structure
with the following fields

a

is a float

b

is a cell

c

is a float

Given the (float-aligned) base address of the structure
we get the address of the field

a

without doing anything further.

b

with float+

c

with float+ cell+ faligned

It is easy to see that this can become quite tiring.

Moreover, it is not very readable, because seeing a
cell+ tells us neither which kind of structure is accessed
nor what field is accessed; we have to somehow infer the

http://www.complang.tuwien.ac.at/forth/objects/structs.html
http://www.complang.tuwien.ac.at/forth/objects/structs.html
http://www.complang.tuwien.ac.at/forth/objects/structs.html

Chapter 5: Forth Words 286

kind of structure, and then look up in the documentation,
which field of that structure corresponds to that offset.

Finally, this kind of address arithmetic also causes
maintenance troubles: If you add or delete a field some-
where in the middle of the structure, you have to find and
change all computations for the fields afterwards.

So, instead of using cell+ and friends directly, how
about storing the offsets in constants:

0 constant a-offset

0 float+ constant b-offset

0 float+ cell+ faligned c-offset

Now we can get the address of field x with x-offset

+. This is much better in all respects. Of course, you still
have to change all later offset definitions if you add a field.
You can fix this by declaring the offsets in the following
way:

0 constant a-offset

a-offset float+ constant b-offset

b-offset cell+ faligned constant c-offset

Since we always use the offsets with +, we could use a
defining word cfield that includes the + in the action of
the defined word:

: cfield (n "name" --)

create ,

does> (name execution: addr1 -- addr2)

@ + ;

0 cfield a

0 a float+ cfield b

0 b cell+ faligned cfield c

Instead of x-offset +, we now simply write x.

Chapter 5: Forth Words 287

The structure field words now can be used quite nicely.
However, their definition is still a bit cumbersome: We
have to repeat the name, the information about size and
alignment is distributed before and after the field defini-
tions etc. The structure package presented here addresses
these problems.

5.22.2 Structure Usage

You can define a structure for a (data-less) linked list with:

struct

cell% field list-next

end-struct list%

With the address of the list node on the stack, you can
compute the address of the field that contains the address
of the next node with list-next. E.g., you can determine
the length of a list with:

: list-length (list -- n)

\ "list" is a pointer to the first element of a linked list

\ "n" is the length of the list

0 BEGIN (list1 n1)

over

WHILE (list1 n1)

1+ swap list-next @ swap

REPEAT

nip ;

You can reserve memory for a list node in the dictionary
with list% %allot, which leaves the address of the list
node on the stack. For the equivalent allocation on the
heap you can use list% %alloc (or, for an allocate-like
stack effect (i.e., with ior), use list% %allocate). You
can get the the size of a list node with list% %size and
its alignment with list% %alignment.

Chapter 5: Forth Words 288

Note that in Standard Forth the body of a created
word is aligned but not necessarily faligned; therefore,
if you do a:

create name foo% %allot drop

then the memory alloted for foo% is guaranteed to start
at the body of name only if foo% contains only character,
cell and double fields. Therefore, if your structure contains
floats, better use

foo% %allot constant name

You can include a structure foo% as a field of another
structure, like this:

struct

...

foo% field ...

...

end-struct ...

Instead of starting with an empty structure, you can ex-
tend an existing structure. E.g., a plain linked list without
data, as defined above, is hardly useful; You can extend it
to a linked list of integers, like this:24

list%

cell% field intlist-int

end-struct intlist%

intlist% is a structure with two fields: list-next and
intlist-int.

24 This feature is also known as extended records. It is the main
innovation in the Oberon language; in other words, adding this
feature to Modula-2 led Wirth to create a new language, write a
new compiler etc. Adding this feature to Forth just required a
few lines of code.

Chapter 5: Forth Words 289

You can specify an array type containing n elements of
type foo% like this:

foo% n *

You can use this array type in any place where you can
use a normal type, e.g., when defining a field, or with
%allot.

The first field is at the base address of a structure and
the word for this field (e.g., list-next) actually does not
change the address on the stack. You may be tempted
to leave it away in the interest of run-time and space effi-
ciency. This is not necessary, because the structure pack-
age optimizes this case: If you compile a first-field words,
no code is generated. So, in the interest of readability and
maintainability you should include the word for the field
when accessing the field.

5.22.3 Structure Naming Convention

The field names that come to (my) mind are often quite
generic, and, if used, would cause frequent name clashes.
E.g., many structures probably contain a counter field.
The structure names that come to (my) mind are often
also the logical choice for the names of words that create
such a structure.

Therefore, I have adopted the following naming con-
ventions:

• The names of fields are of the form struct-field,
where struct is the basic name of the structure, and
field is the basic name of the field. You can think of
field words as converting the (address of the) structure
into the (address of the) field.

Chapter 5: Forth Words 290

• The names of structures are of the form struct%, where
struct is the basic name of the structure.

This naming convention does not work that well for
fields of extended structures; e.g., the integer list struc-
ture has a field intlist-int, but has list-next, not
intlist-next.

5.22.4 Structure Implementation

The central idea in the implementation is to pass the data
about the structure being built on the stack, not in some
global variable. Everything else falls into place naturally
once this design decision is made.

The type description on the stack is of the form align
size. Keeping the size on the top-of-stack makes dealing
with arrays very simple.

field is a defining word that uses Create and DOES>.
The body of the field contains the offset of the field, and
the normal DOES> action is simply:

@ +

i.e., add the offset to the address, giving the stack effect
addr1 – addr2 for a field.

This simple structure is slightly complicated by the op-
timization for fields with offset 0, which requires a different
DOES>-part (because we cannot rely on there being some-
thing on the stack if such a field is invoked during com-
pilation). Therefore, we put the different DOES>-parts in
separate words, and decide which one to invoke based on
the offset. For a zero offset, the field is basically a noop;
it is immediate, and therefore no code is generated when
it is compiled.

Chapter 5: Forth Words 291

5.22.5 Structure Glossary

%align (align size –) gforth “%align”

Align the data space pointer to the alignment align.

%alignment (align size – align) gforth “%alignment”

The alignment of the structure.

%alloc (align size – addr) gforth “%alloc”

Allocate size address units with alignment align, giving
a data block at addr; throw an ior code if not successful.

%allocate (align size – addr ior) gforth “%allocate”

Allocate size address units with alignment align, similar
to allocate.

%allot (align size – addr) gforth “%allot”

Allot size address units of data space with alignment
align; the resulting block of data is found at addr.

cell% (– align size) gforth “cell%”

char% (– align size) gforth “char%”

dfloat% (– align size) gforth “dfloat%”

double% (– align size) gforth “double%”

end-struct (align size "name" –) gforth “end-struct”

Define a structure/type descriptor name with align-
ment align and size size1 (size rounded up to be a multiple
of align).
name execution: – align size1

field (align1 offset1 align size "name" – align2 off-
set2) gforth “field”

Create a field name with offset offset1, and the type
given by align size. offset2 is the offset of the next field,

Chapter 5: Forth Words 292

and align2 is the alignment of all fields.
name execution: addr1 – addr2.
addr2=addr1+offset1

float% (– align size) gforth “float%”

naligned (addr1 n – addr2) gforth “naligned”

addr2 is the aligned version of addr1 with respect to
the alignment n.

sfloat% (– align size) gforth “sfloat%”

%size (align size – size) gforth “%size”

The size of the structure.

struct (– align size) gforth “struct”

An empty structure, used to start a structure definition.

5.22.6 Forth200x Structures

The Forth 2012 standard defines a slightly less convenient
form of structures. In general (when using field+, you
have to perform the alignment yourself, but there are a
number of convenience words (e.g., field: that perform
the alignment for you.

A typical usage example is:

0

field: s-a

faligned 2 floats +field s-b

constant s-struct

An alternative way of writing this structure is:

begin-structure s-struct

field: s-a

faligned 2 floats +field s-b

Chapter 5: Forth Words 293

end-structure

begin-structure ("name" – struct-sys 0) X:structures “begin-
structure”

end-structure (struct-sys +n –) X:structures “end-
structure”

+field (unknown) unknown “+field”

cfield: (u1 "name" – u2) X:structures “cfield:”

field: (u1 "name" – u2) X:structures “field:”

2field: (u1 "name" – u2) gforth “2field:”

ffield: (u1 "name" – u2) X:structures “ffield:”

sffield: (u1 "name" – u2) X:structures “sffield:”

dffield: (u1 "name" – u2) X:structures “dffield:”

5.23 Object-oriented Forth

Gforth comes with three packages for object-oriented pro-
gramming: objects.fs, oof.fs, and mini-oof.fs; none
of them is preloaded, so you have to include them before
use. The most important differences between these pack-
ages (and others) are discussed in Section 5.23.6 [Compar-
ison with other object models], page 325. All packages are
written in Standard Forth and can be used with any other
Standard Forth.

5.23.1 Why object-oriented
programming?

Often we have to deal with several data structures (ob-
jects), that have to be treated similarly in some respects,
but differently in others. Graphical objects are the text-
book example: circles, triangles, dinosaurs, icons, and oth-
ers, and we may want to add more during program devel-

Chapter 5: Forth Words 294

opment. We want to apply some operations to any graph-
ical object, e.g., draw for displaying it on the screen. How-
ever, draw has to do something different for every kind of
object.

We could implement draw as a big CASE control struc-
ture that executes the appropriate code depending on the
kind of object to be drawn. This would be not be very
elegant, and, moreover, we would have to change draw ev-
ery time we add a new kind of graphical object (say, a
spaceship).

What we would rather do is: When defining spaceships,
we would tell the system: “Here’s how you draw a space-
ship; you figure out the rest”.

This is the problem that all systems solve that (right-
fully) call themselves object-oriented; the object-oriented
packages presented here solve this problem (and not much
else).

5.23.2 Object-Oriented Terminology

This section is mainly for reference, so you don’t have to
understand all of it right away. The terminology is mainly
Smalltalk-inspired. In short:

class
a data structure definition with some extras.

object
an instance of the data structure described by the class
definition.

instance variables
fields of the data structure.

Chapter 5: Forth Words 295

selector
(or method selector) a word (e.g., draw) that performs
an operation on a variety of data structures (classes).
A selector describes what operation to perform. In C++
terminology: a (pure) virtual function.

method
the concrete definition that performs the operation de-
scribed by the selector for a specific class. A method
specifies how the operation is performed for a specific
class.

selector invocation
a call of a selector. One argument of the call (the TOS
(top-of-stack)) is used for determining which method is
used. In Smalltalk terminology: a message (consisting
of the selector and the other arguments) is sent to the
object.

receiving object
the object used for determining the method executed by
a selector invocation. In the objects.fs model, it is the
object that is on the TOS when the selector is invoked.
(Receiving comes from the Smalltalk message terminol-
ogy.)

child class
a class that has (inherits) all properties (instance
variables, selectors, methods) from a parent class. In
Smalltalk terminology: The subclass inherits from the
superclass. In C++ terminology: The derived class
inherits from the base class.

Chapter 5: Forth Words 296

5.23.3 The objects.fs model

This section describes the objects.fs package.
This material also has been published in M. An-
ton Ertl, Yet Another Forth Objects Package
(http://www.complang.tuwien.ac.at/forth/objects/objects.html),
Forth Dimensions 19(2), pages 37–43.

This section assumes that you have read Section 5.22
[Structures], page 284.

The techniques on which this model is based have been
used to implement the parser generator, Gray, and have
also been used in Gforth for implementing the various
flavours of word lists (hashed or not, case-sensitive or not,
special-purpose word lists for locals etc.).

Marcel Hendrix provided helpful comments on this sec-
tion.

5.23.3.1 Properties of the objects.fs
model

• It is straightforward to pass objects on the stack. Pass-
ing selectors on the stack is a little less convenient, but
possible.

• Objects are just data structures in memory, and are ref-
erenced by their address. You can create words for ob-
jects with normal defining words like constant. Like-
wise, there is no difference between instance variables
that contain objects and those that contain other data.

• Late binding is efficient and easy to use.

• It avoids parsing, and thus avoids problems with state-
smartness and reduced extensibility; for convenience
there are a few parsing words, but they have non-
parsing counterparts. There are also a few defining

http://www.complang.tuwien.ac.at/forth/objects/objects.html
http://www.complang.tuwien.ac.at/forth/objects/objects.html

Chapter 5: Forth Words 297

words that parse. This is hard to avoid, because all
standard defining words parse (except :noname); how-
ever, such words are not as bad as many other parsing
words, because they are not state-smart.

• It does not try to incorporate everything. It does a few
things and does them well (IMO). In particular, this
model was not designed to support information hiding
(although it has features that may help); you can use a
separate package for achieving this.

• It is layered; you don’t have to learn and use all features
to use this model. Only a few features are necessary
(see Section 5.23.3.2 [Basic Objects Usage], page 297,
see Section 5.23.3.3 [The Objects base class], page 299,
see Section 5.23.3.4 [Creating objects], page 299.), the
others are optional and independent of each other.

• An implementation in Standard Forth is available.

5.23.3.2 Basic objects.fs Usage

You can define a class for graphical objects like this:

object class \ "object" is the parent class

selector draw (x y graphical --)

end-class graphical

This code defines a class graphical with an opera-
tion draw. We can perform the operation draw on any
graphical object, e.g.:

100 100 t-rex draw

where t-rex is a word (say, a constant) that produces a
graphical object.

How do we create a graphical object? With the present
definitions, we cannot create a useful graphical object. The
class graphical describes graphical objects in general, but

Chapter 5: Forth Words 298

not any concrete graphical object type (C++ users would
call it an abstract class); e.g., there is no method for the
selector draw in the class graphical.

For concrete graphical objects, we define child classes
of the class graphical, e.g.:

graphical class \ "graphical" is the parent class

cell% field circle-radius

:noname (x y circle --)

circle-radius @ draw-circle ;

overrides draw

:noname (n-radius circle --)

circle-radius ! ;

overrides construct

end-class circle

Here we define a class circle as a child of graphical,
with field circle-radius (which behaves just like a field
(see Section 5.22 [Structures], page 284); it defines (us-
ing overrides) new methods for the selectors draw and
construct (construct is defined in object, the parent
class of graphical).

Now we can create a circle on the heap (i.e., allocated
memory) with:

50 circle heap-new constant my-circle

heap-new invokes construct, thus initializing the field
circle-radius with 50. We can draw this new circle at
(100,100) with:

100 100 my-circle draw

Chapter 5: Forth Words 299

Note: You can only invoke a selector if the object
on the TOS (the receiving object) belongs to the class
where the selector was defined or one of its descendents;
e.g., you can invoke draw only for objects belonging to
graphical or its descendents (e.g., circle). Immediately
before end-class, the search order has to be the same as
immediately after class.

5.23.3.3 The object.fs base class

When you define a class, you have to specify a parent class.
So how do you start defining classes? There is one class
available from the start: object. It is ancestor for all
classes and so is the only class that has no parent. It has
two selectors: construct and print.

5.23.3.4 Creating objects

You can create and initialize an object of a class on the
heap with heap-new (... class – object) and in the dictio-
nary (allocation with allot) with dict-new (... class –
object). Both words invoke construct, which consumes
the stack items indicated by "..." above.

If you want to allocate memory for an object yourself,
you can get its alignment and size with class-inst-size

2@ (class – align size). Once you have memory for an
object, you can initialize it with init-object (... class
object –); construct does only a part of the necessary
work.

5.23.3.5 Object-Oriented Programming
Style

This section is not exhaustive.

Chapter 5: Forth Words 300

In general, it is a good idea to ensure that all methods
for the same selector have the same stack effect: when you
invoke a selector, you often have no idea which method will
be invoked, so, unless all methods have the same stack
effect, you will not know the stack effect of the selector
invocation.

One exception to this rule is methods for the selector
construct. We know which method is invoked, because
we specify the class to be constructed at the same place.
Actually, I defined construct as a selector only to give the
users a convenient way to specify initialization. The way
it is used, a mechanism different from selector invocation
would be more natural (but probably would take more
code and more space to explain).

5.23.3.6 Class Binding

Normal selector invocations determine the method at run-
time depending on the class of the receiving object. This
run-time selection is called late binding.

Sometimes it’s preferable to invoke a different method.
For example, you might want to use the simple method
for printing objects instead of the possibly long-winded
print method of the receiver class. You can achieve this
by replacing the invocation of print with:

[bind] object print

in compiled code or:

bind object print

in interpreted code. Alternatively, you can define the
method with a name (e.g., print-object), and then in-
voke it through the name. Class binding is just a (often
more convenient) way to achieve the same effect; it avoids

Chapter 5: Forth Words 301

name clutter and allows you to invoke methods directly
without naming them first.

A frequent use of class binding is this: When we de-
fine a method for a selector, we often want the method
to do what the selector does in the parent class, and a
little more. There is a special word for this purpose:
[parent]; [parent] selector is equivalent to [bind]

parent selector, where parent is the parent class of the
current class. E.g., a method definition might look like:

:noname

dup [parent] foo \ do parent’s foo on the receiving object

... \ do some more

; overrides foo

In Object-oriented programming in ANS Forth (Forth
Dimensions, March 1997), Andrew McKewan presents
class binding as an optimization technique. I recommend
not using it for this purpose unless you are in an emer-
gency. Late binding is pretty fast with this model anyway,
so the benefit of using class binding is small; the cost of
using class binding where it is not appropriate is reduced
maintainability.

While we are at programming style questions: You
should bind selectors only to ancestor classes of the receiv-
ing object. E.g., say, you know that the receiving object is
of class foo or its descendents; then you should bind only
to foo and its ancestors.

5.23.3.7 Method conveniences

In a method you usually access the receiving object pretty
often. If you define the method as a plain colon definition
(e.g., with :noname), you may have to do a lot of stack
gymnastics. To avoid this, you can define the method with

Chapter 5: Forth Words 302

m: ... ;m. E.g., you could define the method for drawing
a circle with

m: (x y circle --)

(x y) this circle-radius @ draw-circle ;m

When this method is executed, the receiver object is
removed from the stack; you can access it with this (ad-
mittedly, in this example the use of m: ... ;m offers no
advantage). Note that I specify the stack effect for the
whole method (i.e. including the receiver object), not just
for the code between m: and ;m. You cannot use exit in
m:...;m; instead, use exitm.25

You will frequently use sequences of the form this

field (in the example above: this circle-radius). If
you use the field only in this way, you can define it with
inst-var and eliminate the this before the field name.
E.g., the circle class above could also be defined with:

graphical class

cell% inst-var radius

m: (x y circle --)

radius @ draw-circle ;m

overrides draw

m: (n-radius circle --)

radius ! ;m

overrides construct

end-class circle

25 Moreover, for any word that calls catch and was defined before
loading objects.fs, you have to redefine it like I redefined catch:
: catch this >r catch r> to-this ;

Chapter 5: Forth Words 303

radius can only be used in circle and its descendent
classes and inside m:...;m.

You can also define fields with inst-value, which is to
inst-var what value is to variable. You can change the
value of such a field with [to-inst]. E.g., we could also
define the class circle like this:

graphical class

inst-value radius

m: (x y circle --)

radius draw-circle ;m

overrides draw

m: (n-radius circle --)

[to-inst] radius ;m

overrides construct

end-class circle

5.23.3.8 Classes and Scoping

Inheritance is frequent, unlike structure extension. This
exacerbates the problem with the field name conven-
tion (see Section 5.22.3 [Structure Naming Convention],
page 289): One always has to remember in which class the
field was originally defined; changing a part of the class
structure would require changes for renaming in otherwise
unaffected code.

To solve this problem, I added a scoping mechanism
(which was not in my original charter): A field defined
with inst-var (or inst-value) is visible only in the class
where it is defined and in the descendent classes of this

Chapter 5: Forth Words 304

class. Using such fields only makes sense in m:-defined
methods in these classes anyway.

This scoping mechanism allows us to use the unadorned
field name, because name clashes with unrelated words
become much less likely.

Once we have this mechanism, we can also use it for
controlling the visibility of other words: All words de-
fined after protected are visible only in the current class
and its descendents. public restores the compilation
(i.e. current) word list that was in effect before. If you
have several protecteds without an intervening public

or set-current, public will restore the compilation word
list in effect before the first of these protecteds.

5.23.3.9 Dividing classes

You may want to do the definition of methods separate
from the definition of the class, its selectors, fields, and
instance variables, i.e., separate the implementation from
the definition. You can do this in the following way:

graphical class

inst-value radius

end-class circle

... \ do some other stuff

circle methods \ now we are ready

m: (x y circle --)

radius draw-circle ;m

overrides draw

m: (n-radius circle --)

Chapter 5: Forth Words 305

[to-inst] radius ;m

overrides construct

end-methods

You can use several methods...end-methods sections.
The only things you can do to the class in these sections
are: defining methods, and overriding the class’s selectors.
You must not define new selectors or fields.

Note that you often have to override a selector be-
fore using it. In particular, you usually have to over-
ride construct with a new method before you can invoke
heap-new and friends. E.g., you must not create a circle
before the overrides construct sequence in the example
above.

5.23.3.10 Object Interfaces

In this model you can only call selectors defined in the
class of the receiving objects or in one of its ancestors. If
you call a selector with a receiving object that is not in one
of these classes, the result is undefined; if you are lucky,
the program crashes immediately.

Now consider the case when you want to have a selector
(or several) available in two classes: You would have to add
the selector to a common ancestor class, in the worst case
to object. You may not want to do this, e.g., because
someone else is responsible for this ancestor class.

The solution for this problem is interfaces. An interface
is a collection of selectors. If a class implements an inter-
face, the selectors become available to the class and its de-
scendents. A class can implement an unlimited number of
interfaces. For the problem discussed above, we would de-

Chapter 5: Forth Words 306

fine an interface for the selector(s), and both classes would
implement the interface.

As an example, consider an interface storage for writ-
ing objects to disk and getting them back, and a class foo
that implements it. The code would look like this:

interface

selector write (file object --)

selector read1 (file object --)

end-interface storage

bar class

storage implementation

... overrides write

... overrides read1

...

end-class foo

(I would add a word read (file – object) that uses read1
internally, but that’s beyond the point illustrated here.)

Note that you cannot use protected in an interface;
and of course you cannot define fields.

In the Neon model, all selectors are available for all
classes; therefore it does not need interfaces. The price
you pay in this model is slower late binding, and therefore,
added complexity to avoid late binding.

5.23.3.11 objects.fs Implementation

An object is a piece of memory, like one of the data struc-
tures described with struct...end-struct. It has a field
object-map that points to the method map for the ob-
ject’s class.

Chapter 5: Forth Words 307

The method map26 is an array that contains the exe-
cution tokens (xts) of the methods for the object’s class.
Each selector contains an offset into a method map.

selector is a defining word that uses CREATE and
DOES>. The body of the selector contains the offset; the
DOES> action for a class selector is, basically:

(object addr) @ over object-map @ + @ execute

Since object-map is the first field of the object, it does
not generate any code. As you can see, calling a selector
has a small, constant cost.

A class is basically a struct combined with a method
map. During the class definition the alignment and size of
the class are passed on the stack, just as with structs, so
field can also be used for defining class fields. However,
passing more items on the stack would be inconvenient, so
class builds a data structure in memory, which is accessed
through the variable current-interface. After its defi-
nition is complete, the class is represented on the stack by
a pointer (e.g., as parameter for a child class definition).

A new class starts off with the alignment and size of its
parent, and a copy of the parent’s method map. Defining
new fields extends the size and alignment; likewise, defin-
ing new selectors extends the method map. overrides

just stores a new xt in the method map at the offset given
by the selector.

Class binding just gets the xt at the offset given by the
selector from the class’s method map and compile,s (in
the case of [bind]) it.

26 This is Self terminology; in C++ terminology: virtual function
table.

Chapter 5: Forth Words 308

I implemented this as a value. At the start of an
m:...;m method the old this is stored to the return stack
and restored at the end; and the object on the TOS is
stored TO this. This technique has one disadvantage: If
the user does not leave the method via ;m, but via throw

or exit, this is not restored (and exit may crash). To
deal with the throw problem, I have redefined catch to
save and restore this; the same should be done with any
word that can catch an exception. As for exit, I simply
forbid it (as a replacement, there is exitm).

inst-var is just the same as field, with a different
DOES> action:

@ this +

Similar for inst-value.

Each class also has a word list that contains the words
defined with inst-var and inst-value, and its protected
words. It also has a pointer to its parent. class pushes
the word lists of the class and all its ancestors onto the
search order stack, and end-class drops them.

An interface is like a class without fields, parent and
protected words; i.e., it just has a method map. If a
class implements an interface, its method map contains a
pointer to the method map of the interface. The positive
offsets in the map are reserved for class methods, there-
fore interface map pointers have negative offsets. Inter-
faces have offsets that are unique throughout the system,
unlike class selectors, whose offsets are only unique for the
classes where the selector is available (invokable).

This structure means that interface selectors have to
perform one indirection more than class selectors to find
their method. Their body contains the interface map

Chapter 5: Forth Words 309

pointer offset in the class method map, and the method
offset in the interface method map. The does> action for
an interface selector is, basically:

(object selector-body)

2dup selector-interface @ (object selector-body object interface-offset)

swap object-map @ + @ (object selector-body map)

swap selector-offset @ + @ execute

where object-map and selector-offset are first
fields and generate no code.

As a concrete example, consider the following code:

interface

selector if1sel1

selector if1sel2

end-interface if1

object class

if1 implementation

selector cl1sel1

cell% inst-var cl1iv1

’ m1 overrides construct

’ m2 overrides if1sel1

’ m3 overrides if1sel2

’ m4 overrides cl1sel2

end-class cl1

create obj1 object dict-new drop

create obj2 cl1 dict-new drop

The data structure created by this code (including
the data structure for object) is shown in the figure

objects-implementation.eps

Chapter 5: Forth Words 310

(objects-implementation.eps), assuming a cell size of
4.

5.23.3.12 objects.fs Glossary

bind (... "class" "selector" – ...) objects “bind”

Execute the method for selector in class.

<bind> (class selector-xt – xt) objects “<bind>”

xt is the method for the selector selector-xt in class.

bind’ ("class" "selector" – xt) objects “bind”’

xt is the method for selector in class.

[bind] (compile-time: "class" "selector" – ; run-time: ... ob-
ject – ...) objects “[bind]”

Compile the method for selector in class.

class (parent-class – align offset) objects “class”

Start a new class definition as a child of parent-class.
align offset are for use by field etc.

class->map (class – map) objects “class->map”

map is the pointer to class’s method map; it points to
the place in the map to which the selector offsets refer (i.e.,
where object-maps point to).

class-inst-size (class – addr) objects “class-inst-size”

Give the size specification for an instance (i.e. an
object) of class; used as class-inst-size 2 (class --

align size).

class-override! (xt sel-xt class-map –) objects “class-
override!”

xt is the new method for the selector sel-xt in class-
map.

class-previous (class –) objects “class-previous”

objects-implementation.eps
objects-implementation.eps

Chapter 5: Forth Words 311

Drop class’s wordlists from the search order. No check-
ing is made whether class’s wordlists are actually on the
search order.

class>order (class –) objects “class>order”

Add class’s wordlists to the head of the search-order.

construct (... object –) objects “construct”

Initialize the data fields of object. The method for the
class object just does nothing: (object --).

current’ ("selector" – xt) objects “current”’

xt is the method for selector in the current class.

[current] (compile-time: "selector" – ; run-time: ... ob-
ject – ...) objects “[current]”

Compile the method for selector in the current class.

current-interface (– addr) objects “current-interface”

Variable: contains the class or interface currently being
defined.

dict-new (... class – object) objects “dict-new”

allot and initialize an object of class class in the dic-
tionary.

end-class (align offset "name" –) objects “end-class”

name execution: -- class

End a class definition. The resulting class is class.

end-class-noname (align offset – class) objects “end-
class-noname”

End a class definition. The resulting class is class.

end-interface ("name" –) objects “end-interface”

name execution: -- interface

End an interface definition. The resulting interface is
interface.

Chapter 5: Forth Words 312

end-interface-noname (– interface) objects “end-
interface-noname”

End an interface definition. The resulting interface is
interface.

end-methods (–) objects “end-methods”

Switch back from defining methods of a class to normal
mode (currently this just restores the old search order).

exitm (–) objects “exitm”

exit from a method; restore old this.

heap-new (... class – object) objects “heap-new”

allocate and initialize an object of class class.

implementation (interface –) objects “implementation”

The current class implements interface. I.e., you can
use all selectors of the interface in the current class and its
descendents.

init-object (... class object –) objects “init-object”

Initialize a chunk of memory (object) to an object of
class class; then performs construct.

inst-value (align1 offset1 "name" – align2 offset2) ob-
jects “inst-value”

name execution: -- w

w is the value of the field name in this object.

inst-var (align1 offset1 align size "name" – align2 off-
set2) objects “inst-var”

name execution: -- addr

addr is the address of the field name in this object.

interface (–) objects “interface”

Start an interface definition.

m: (– xt colon-sys; run-time: object –) objects “m:”

Chapter 5: Forth Words 313

Start a method definition; object becomes new this.

:m ("name" – xt; run-time: object –) objects “:m”

Start a named method definition; object becomes new
this. Has to be ended with ;m.

;m (colon-sys –; run-time: –) objects “;m”

End a method definition; restore old this.

method (xt "name" –) objects “method”

name execution: ... object -- ...

Create selector name and makes xt its method in the cur-
rent class.

methods (class –) objects “methods”

Makes class the current class. This is intended to be
used for defining methods to override selectors; you cannot
define new fields or selectors.

object (– class) objects “object”

the ancestor of all classes.

overrides (xt "selector" –) objects “overrides”

replace default method for selector in the current class
with xt. overrides must not be used during an interface
definition.

[parent] (compile-time: "selector" – ; run-time: ... ob-
ject – ...) objects “[parent]”

Compile the method for selector in the parent of the
current class.

print (object –) objects “print”

Print the object. The method for the class object prints
the address of the object and the address of its class.

protected (–) objects “protected”

Chapter 5: Forth Words 314

Set the compilation wordlist to the current class’s
wordlist

public (–) objects “public”

Restore the compilation wordlist that was in effect be-
fore the last protected that actually changed the compi-
lation wordlist.

selector ("name" –) objects “selector”

name execution: ... object -- ...

Create selector name for the current class and its descen-
dents; you can set a method for the selector in the current
class with overrides.

this (– object) objects “this”

the receiving object of the current method (aka active
object).

<to-inst> (w xt –) objects “<to-inst>”

store w into the field xt in this object.

[to-inst] (compile-time: "name" – ; run-time: w –) ob-
jects “[to-inst]”

store w into field name in this object.

to-this (object –) objects “to-this”

Set this (used internally, but useful when debugging).

xt-new (... class xt – object) objects “xt-new”

Make a new object, using xt (align size -- addr)

to get memory.

5.23.4 The oof.fs model

This section describes the oof.fs package.

The package described in this section has been used
in bigFORTH since 1991, and used for two large appli-
cations: a chromatographic system used to create new

Chapter 5: Forth Words 315

medicaments, and a graphic user interface library (MI-
NOS).

You can find a description (in German) of oof.fs in
Object oriented bigFORTH by Bernd Paysan, published
in Vierte Dimension 10(2), 1994.

5.23.4.1 Properties of the oof.fs model

• This model combines object oriented programming
with information hiding. It helps you writing large ap-
plication, where scoping is necessary, because it pro-
vides class-oriented scoping.

• Named objects, object pointers, and object arrays can
be created, selector invocation uses the “object selec-
tor” syntax. Selector invocation to objects and/or se-
lectors on the stack is a bit less convenient, but possible.

• Selector invocation and instance variable usage of the
active object is straightforward, since both make use of
the active object.

• Late binding is efficient and easy to use.

• State-smart objects parse selectors. However, extensi-
bility is provided using a (parsing) selector postpone

and a selector ’.

• An implementation in Standard Forth is available.

5.23.4.2 Basic oof.fs Usage

This section uses the same example as for objects (see
Section 5.23.3.2 [Basic Objects Usage], page 297).

You can define a class for graphical objects like this:

object class graphical \ "object" is the parent class

method draw (x y --)

class;

Chapter 5: Forth Words 316

This code defines a class graphical with an opera-
tion draw. We can perform the operation draw on any
graphical object, e.g.:

100 100 t-rex draw

where t-rex is an object or object pointer, created with
e.g. graphical : t-rex.

How do we create a graphical object? With the present
definitions, we cannot create a useful graphical object. The
class graphical describes graphical objects in general, but
not any concrete graphical object type (C++ users would
call it an abstract class); e.g., there is no method for the
selector draw in the class graphical.

For concrete graphical objects, we define child classes
of the class graphical, e.g.:

graphical class circle \ "graphical" is the parent class

cell var circle-radius

how:

: draw (x y --)

circle-radius @ draw-circle ;

: init (n-radius --)

circle-radius ! ;

class;

Here we define a class circle as a child of graphical,
with a field circle-radius; it defines new methods for
the selectors draw and init (init is defined in object,
the parent class of graphical).

Now we can create a circle in the dictionary with:

50 circle : my-circle

: invokes init, thus initializing the field circle-radius

with 50. We can draw this new circle at (100,100) with:

Chapter 5: Forth Words 317

100 100 my-circle draw

Note: You can only invoke a selector if the receiving
object belongs to the class where the selector was defined
or one of its descendents; e.g., you can invoke draw only
for objects belonging to graphical or its descendents (e.g.,
circle). The scoping mechanism will check if you try to
invoke a selector that is not defined in this class hierarchy,
so you’ll get an error at compilation time.

5.23.4.3 The oof.fs base class

When you define a class, you have to specify a parent class.
So how do you start defining classes? There is one class
available from the start: object. You have to use it as
ancestor for all classes. It is the only class that has no
parent. Classes are also objects, except that they don’t
have instance variables; class manipulation such as inheri-
tance or changing definitions of a class is handled through
selectors of the class object.

object provides a number of selectors:

• class for subclassing, definitions to add definitions
later on, and class? to get type informations (is the
class a subclass of the class passed on the stack?).

class ("name" –) oof “class”

definitions (–) oof “definitions”

class? (o – flag) oof “class-query”

• init and dispose as constructor and destructor of the
object. init is invocated after the object’s memory
is allocated, while dispose also handles deallocation.
Thus if you redefine dispose, you have to call the par-
ent’s dispose with super dispose, too.

init (... –) oof “init”

Chapter 5: Forth Words 318

dispose (–) oof “dispose”

• new, new[], :, ptr, asptr, and [] to create named and
unnamed objects and object arrays or object pointers.

new (– o) oof “new”

new[] (n – o) oof “new-array”

: ("name" –) oof “define”

ptr ("name" –) oof “ptr”

asptr (o "name" –) oof “asptr”

[] (n "name" –) oof “array”

• :: and super for explicit scoping. You should use ex-
plicit scoping only for super classes or classes with the
same set of instance variables. Explicitly-scoped selec-
tors use early binding.

:: ("name" –) oof “scope”

super ("name" –) oof “super”

• self to get the address of the object

self (– o) oof “self”

• bind, bound, link, and is to assign object pointers and
instance defers.

bind (o "name" –) oof “bind”

bound (class addr "name" –) oof “bound”

link ("name" – class addr) oof “link”

is (xt "name" –) oof “is”

• ’ to obtain selector tokens, send to invocate selectors
form the stack, and postpone to generate selector in-
vocation code.

’ ("name" – xt) oof “tick”

postpone ("name" –) oof “postpone”

Chapter 5: Forth Words 319

• with and endwith to select the active object from the
stack, and enable its scope. Using with and endwith

also allows you to create code using selector postpone
without being trapped by the state-smart objects.

with (o –) oof “with”

endwith (–) oof “endwith”

5.23.4.4 Class Declaration

• Instance variables

var (size –) oof “var”

Create an instance variable

• Object pointers

ptr (–) oof “ptr”

Create an instance pointer

asptr (class –) oof “asptr”

Create an alias to an instance pointer, cast to another
class.

• Instance defers

defer (–) oof “defer”

Create an instance defer

• Method selectors

early (–) oof “early”

Create a method selector for early binding.

method (–) oof “method”

Create a method selector.

• Class-wide variables

static (–) oof “static”

Create a class-wide cell-sized variable.

Chapter 5: Forth Words 320

• End declaration

how: (–) oof “how-to”

End declaration, start implementation

class; (–) oof “end-class”

End class declaration or implementation

5.23.4.5 Class Implementation

5.23.5 The mini-oof.fs model

Gforth’s third object oriented Forth package is a 12-liner.
It uses a mixture of the objects.fs and the oof.fs syn-
tax, and reduces to the bare minimum of features. This is
based on a posting of Bernd Paysan in comp.lang.forth.

5.23.5.1 Basic mini-oof.fs Usage

There is a base class (class, which allocates one cell for
the object pointer) plus seven other words: to define a
method, a variable, a class; to end a class, to resolve bind-
ing, to allocate an object and to compile a class method.

object (– a-addr) mini-oof “object”

object is the base class of all objects.

method (m v "name" – m’ v) mini-oof “method”

Define a selector.

var (m v size "name" – m v’) mini-oof “var”

Define a variable with size bytes.

class (class – class selectors vars) mini-oof “class”

Start the definition of a class.

end-class (class selectors vars "name" –) mini-oof “end-
class”

Chapter 5: Forth Words 321

End the definition of a class.

defines (xt class "name" –) mini-oof “defines”

Bind xt to the selector name in class class.

new (class – o) mini-oof “new”

Create a new incarnation of the class class.

:: (class "name" –) mini-oof “colon-colon”

Compile the method for the selector name of the class
class (not immediate!).

5.23.5.2 Mini-OOF Example

A short example shows how to use this package. This
example, in slightly extended form, is supplied as
moof-exm.fs

object class

method init

method draw

end-class graphical

This code defines a class graphical with an opera-
tion draw. We can perform the operation draw on any
graphical object, e.g.:

100 100 t-rex draw

where t-rex is an object or object pointer, created with
e.g. graphical new Constant t-rex.

For concrete graphical objects, we define child classes
of the class graphical, e.g.:

graphical class

cell var circle-radius

end-class circle \ "graphical" is the parent class

:noname (x y --)

Chapter 5: Forth Words 322

circle-radius @ draw-circle ; circle defines draw

:noname (r --)

circle-radius ! ; circle defines init

There is no implicit init method, so we have to define
one. The creation code of the object now has to call init
explicitely.

circle new Constant my-circle

50 my-circle init

It is also possible to add a function to create named
objects with automatic call of init, given that all objects
have init on the same place:

: new: (.. o "name" --)

new dup Constant init ;

80 circle new: large-circle

We can draw this new circle at (100,100) with:

100 100 my-circle draw

5.23.5.3 mini-oof.fs Implementation

Object-oriented systems with late binding typically use a
“vtable”-approach: the first variable in each object is a
pointer to a table, which contains the methods as function
pointers. The vtable may also contain other information.

So first, let’s declare selectors:

: method (m v "name" -- m’ v) Create over , swap cell+ swap

DOES> (... o -- ...) @ over @ + @ execute ;

During selector declaration, the number of selectors
and instance variables is on the stack (in address units).
method creates one selector and increments the selec-
tor number. To execute a selector, it takes the object,
fetches the vtable pointer, adds the offset, and executes

Chapter 5: Forth Words 323

the method xt stored there. Each selector takes the ob-
ject it is invoked with as top of stack parameter; it passes
the parameters (including the object) unchanged to the
appropriate method which should consume that object.

Now, we also have to declare instance variables

: var (m v size "name" -- m v’) Create over , +

DOES> (o -- addr) @ + ;

As before, a word is created with the current offset. In-
stance variables can have different sizes (cells, floats, dou-
bles, chars), so all we do is take the size and add it to the
offset. If your machine has alignment restrictions, put the
proper aligned or faligned before the variable, to adjust
the variable offset. That’s why it is on the top of stack.

We need a starting point (the base object) and some
syntactic sugar:

Create object 1 cells , 2 cells ,

: class (class -- class selectors vars) dup 2@ ;

For inheritance, the vtable of the parent object has to
be copied when a new, derived class is declared. This
gives all the methods of the parent class, which can be
overridden, though.

: end-class (class selectors vars "name" --)

Create here >r , dup , 2 cells ?DO [’] noop , 1 cells +LOOP

cell+ dup cell+ r> rot @ 2 cells /string move ;

The first line creates the vtable, initialized with noops.
The second line is the inheritance mechanism, it copies the
xts from the parent vtable.

We still have no way to define new methods, let’s do
that now:

: defines (xt class "name" --) ’ >body @ + ! ;

Chapter 5: Forth Words 324

To allocate a new object, we need a word, too:

: new (class -- o) here over @ allot swap over ! ;

Sometimes derived classes want to access the method of
the parent object. There are two ways to achieve this with
Mini-OOF: first, you could use named words, and second,
you could look up the vtable of the parent object.

: :: (class "name" --) ’ >body @ + @ compile, ;

Nothing can be more confusing than a good example,
so here is one. First let’s declare a text object (called
button), that stores text and position:

object class

cell var text

cell var len

cell var x

cell var y

method init

method draw

end-class button

Now, implement the two methods, draw and init:

:noname (o --)

>r r@ x @ r@ y @ at-xy r@ text @ r> len @ type ;

button defines draw

:noname (addr u o --)

>r 0 r@ x ! 0 r@ y ! r@ len ! r> text ! ;

button defines init

To demonstrate inheritance, we define a class
bold-button, with no new data and no new selec-
tors:

button class

end-class bold-button

Chapter 5: Forth Words 325

: bold 27 emit ." [1m" ;

: normal 27 emit ." [0m" ;

The class bold-button has a different draw method to
button, but the new method is defined in terms of the
draw method for button:

:noname bold [button :: draw] normal ; bold-button defines draw

Finally, create two objects and apply selectors:

button new Constant foo

s" thin foo" foo init

page

foo draw

bold-button new Constant bar

s" fat bar" bar init

1 bar y !

bar draw

5.23.6 Comparison with other object
models

Many object-oriented Forth extensions have been pro-
posed (A survey of object-oriented Forths (SIGPLAN No-
tices, April 1996) by Bradford J. Rodriguez and W. F. S.
Poehlman lists 17). This section discusses the relation of
the object models described here to two well-known and
two closely-related (by the use of method maps) models.
Andras Zsoter helped us with this section.

The most popular model currently seems to be the
Neon model (see Object-oriented programming in ANS
Forth (Forth Dimensions, March 1997) by Andrew McKe-
wan) but this model has a number of limitations27:

27 A longer version of this critique can be found in On Standardizing
Object-Oriented Forth Extensions (Forth Dimensions, May 1997)
by Anton Ertl.

Chapter 5: Forth Words 326

• It uses a selector object syntax, which makes it un-
natural to pass objects on the stack.

• It requires that the selector parses the input stream (at
compile time); this leads to reduced extensibility and
to bugs that are hard to find.

• It allows using every selector on every object; this elim-
inates the need for interfaces, but makes it harder to
create efficient implementations.

Another well-known publication is Object-Oriented
Forth (Academic Press, London, 1987) by Dick Poun-
tain. However, it is not really about object-oriented
programming, because it hardly deals with late binding.
Instead, it focuses on features like information hiding and
overloading that are characteristic of modular languages
like Ada (83).

In Does late binding have to be slow? (http://www.
forth.org/oopf.html) (Forth Dimensions 18(1) 1996,
pages 31-35) Andras Zsoter describes a model that makes
heavy use of an active object (like this in objects.fs):
The active object is not only used for accessing all fields,
but also specifies the receiving object of every selector in-
vocation; you have to change the active object explicitly
with { ... }, whereas in objects.fs it changes more or
less implicitly at m: ... ;m. Such a change at the method
entry point is unnecessary with Zsoter’s model, because
the receiving object is the active object already. On the
other hand, the explicit change is absolutely necessary in
that model, because otherwise no one could ever change
the active object. An Standard Forth implementation of
this model is available through http://www.forth.org/

oopf.html.

http://www.forth.org/oopf.html
http://www.forth.org/oopf.html
http://www.forth.org/oopf.html
http://www.forth.org/oopf.html

Chapter 5: Forth Words 327

The oof.fs model combines information hiding and
overloading resolution (by keeping names in various word
lists) with object-oriented programming. It sets the ac-
tive object implicitly on method entry, but also allows ex-
plicit changing (with >o...o> or with with...endwith).
It uses parsing and state-smart objects and classes for re-
solving overloading and for early binding: the object or
class parses the selector and determines the method from
this. If the selector is not parsed by an object or class, it
performs a call to the selector for the active object (late
binding), like Zsoter’s model. Fields are always accessed
through the active object. The big disadvantage of this
model is the parsing and the state-smartness, which re-
duces extensibility and increases the opportunities for sub-
tle bugs; essentially, you are only safe if you never tick or
postpone an object or class (Bernd disagrees, but I (An-
ton) am not convinced).

The mini-oof.fs model is quite similar to a very
stripped-down version of the objects.fs model, but syn-
tactically it is a mixture of the objects.fs and oof.fs

models.

5.24 Programming Tools

5.24.1 Locating source code definitions

Many programming systems are organized as an integrated
development environment (IDE) where the editor is the
hub of the system, and allows building and running pro-
grams. If you want that, Gforth has it, too (see Chapter 12
[Emacs and Gforth], page 425).

However, several Forth systems have a different kind of
IDE: The Forth command line is the hub of the environ-

Chapter 5: Forth Words 328

ment; you can view the source from there in various ways,
and call an editor if needed.

Gforth also implements such an IDE. It mostly follows
the conventions of SwiftForth where they exist, but imple-
ments features beyond them.

An advantage of this approach is that it allows you
to use your favourite editor: set the environment variable
EDITOR to your favourite editor, and the editing commands
will call that editor; Gforth invokes some GUI editors in
the background (so you do not need to finish editing to
continue with your Forth session), terminal editors in the
foreground (default for editors not known to Gforth is fore-
ground). If you have not set EDITOR, the default editor is
vi.

locate ("name" –) gforth “locate”

Show the source code of the word name and set the
current location there.

The current location is set by a number of other words
in addition to locate. Also, when an error happens while
loading a file, the location of the error becomes the current
location.

A number of words work with the current location:

l (–) unknown “l”

Display source code lines at the current location.

n (–) gforth “n”

Display lines behind the current location, or behind the
last n or b output (whichever was later).

b (–) gforth “b”

Display lines before the current location, or before the
last n or b output (whichever was later).

Chapter 5: Forth Words 329

g (–) gforth “g”

Enter the editor at the current location, or at the start
of the last n or b output (whichever was later).

You can control how many lines l, n and b show by
changing the values:

before-locate (– u) gforth “before-locate”

number of lines shown before current location (default
3).

after-locate (– u) gforth “after-locate”

number of lines shown after current location (default
12).

Finally, you can directly go to the source code of a word
in the editor with

edit ("name" –) gforth “edit”

Enter the editor at the location of "name"

5.24.2 Locating documentation

help ("rest-of-line" –) gforth “help”

If no name is given, show basic help. If a documenta-
tion node name is given followed by "::", show the start of
the node. If the name of a word is given, show the docu-
mentation of the word if it exists, or its source code if not.
Use g to enter the editor at the point shown by help.

Help sets the current location, so you can use n and
b to show more of the text, or g to visit the documenta-
tion in an editor (see Section 5.24.1 [Locating source code
definitions], page 327).

Chapter 5: Forth Words 330

5.24.3 Locating uses of a word

where ("name" –) gforth “where”

Show all places where name is used (text-interpreted).
You can then use ww, nw or bw to inspect specific occurences
more closely.

ww (u –) gforth “ww”

The next l or g shows the where result with index u

nw (–) gforth “nw”

The next l or g shows the next where result; if the
current one is the last one, after nw there is no current
one. If there is no current one, after nw the first one is the
current one.

bw (–) gforth “bw”

The next l or g shows the previous where result; if the
current one is the first one, after bw there is no current
one. If there is no current one, after bw the last one is the
current one.

gg (–) gforth “gg”

The next ww, nw, bw, bb, nb, lb (but not locate, edit,
l or g) puts it result in the editor (like g). Use gg gg to
make this permanent rather than one-shot.

ll (–) gforth “ll”

The next ww, nw, bw, bb, nb, lb (but not locate, edit,
l or g) displays in the Forth system (like l). Use ll ll to
make this permanent rather than one-shot.

whereg ("name" –) gforth “whereg”

Like where, but puts the output in the editor. In
Emacs, you can then use the compilation-mode commands
(see Section “Compilation Mode” in GNU Emacs Manual)
to inspect specific occurences more closely.

Chapter 5: Forth Words 331

5.24.4 Locating exception source

tt (u –) gforth “tt”

nt (–) gforth “nt”

bt (–) gforth “bt”

5.24.5 Examining compiled code

And finally, see and friends show compiled code. Some
of the things in the native code are not present in the
compiled code (e.g., formatting and comments), but this is
useful to see what threaded code or native code is produced
by macros and Gforth’s optimization features.

see ("<spaces>name" –) tools “see”

Locate name using the current search order. Display
the definition of name. Since this is achieved by decom-
piling the definition, the formatting is mechanised and
some source information (comments, interpreted sequences
within definitions etc.) is lost.

xt-see (xt –) gforth “xt-see”

Decompile the definition represented by xt.

simple-see ("name" –) gforth “simple-see”

a simple decompiler that’s closer to dump than see.

simple-see-range (addr1 addr2 –) gforth “simple-see-
range”

see-code ("name" –) gforth “see-code”

like simple-see, but also shows the dynamic native
code for the inlined primitives (except for the last).

see-code-range (addr1 addr2 –) gforth “see-code-
range”

Chapter 5: Forth Words 332

5.24.6 Examining data and code

The following words inspect the stack non-destructively:

... (unknown) varargs “(programmable)”

.s (–) tools “dot-s”

Display the number of items on the data stack, fol-
lowed by a list of the items (but not more than specified
by maxdepth-.s; TOS is the right-most item.

f.s (–) gforth “f-dot-s”

Display the number of items on the floating-point stack,
followed by a list of the items (but not more than specified
by maxdepth-.s; TOS is the right-most item.

maxdepth-.s (– addr) gforth “maxdepth-dot-s”

A variable containing 9 by default. .s and f.s display
at most that many stack items.

There is a word .r but it does not display the re-
turn stack! It is used for formatted numeric output (see
Section 5.19.1 [Simple numeric output], page 237).

Depth (unknown) unknown “Depth”

fdepth (– +n) float “f-depth”

+n is the current number of (floating-point) values on
the floating-point stack.

clearstack (... –) gforth “clear-stack”

remove and discard all/any items from the data stack.

clearstacks (... –) gforth “clear-stacks”

empty data and FP stack

The following words inspect memory.

? (a-addr –) tools “question”

Chapter 5: Forth Words 333

Display the contents of address a-addr in the current
number base.

dump (addr u –) unknown “dump”

5.24.7 Forgetting words

Forth allows you to forget words (and everything that was
alloted in the dictonary after them) in a LIFO manner.

marker ("<spaces> name" –) core-ext “marker”

Create a definition, name (called a mark) whose execu-
tion semantics are to remove itself and everything defined
after it.

The most common use of this feature is during progam
development: when you change a source file, forget all the
words it defined and load it again (since you also forget
everything defined after the source file was loaded, you
have to reload that, too). Note that effects like storing
to variables and destroyed system words are not undone
when you forget words. With a system like Gforth, that
is fast enough at starting up and compiling, I find it more
convenient to exit and restart Gforth, as this gives me a
clean slate.

Here’s an example of using marker at the start of a
source file that you are debugging; it ensures that you
only ever have one copy of the file’s definitions compiled
at any time:

[IFDEF] my-code

my-code

[ENDIF]

marker my-code

init-included-files

Chapter 5: Forth Words 334

\ .. definitions start here

\ .

\ .

\ end

5.24.8 Debugging

Languages with a slow edit/compile/link/test develop-
ment loop tend to require sophisticated tracing/stepping
debuggers to facilate debugging.

A much better (faster) way in fast-compiling languages
is to add printing code at well-selected places, let the pro-
gram run, look at the output, see where things went wrong,
add more printing code, etc., until the bug is found.

The simple debugging aids provided in debugs.fs are
meant to support this style of debugging.

The word ~~ prints debugging information (by default
the source location and the stack contents). It is easy
to insert. If you use Emacs it is also easy to remove
(C-x ~ in the Emacs Forth mode to query-replace them
with nothing). The deferred words printdebugdata and
.debugline control the output of ~~. The default source
location output format works well with Emacs’ compila-
tion mode, so you can step through the program at the
source level using C-x ‘ (the advantage over a stepping
debugger is that you can step in any direction and you
know where the crash has happened or where the strange
data has occurred).

~~ (–) gforth “tilde-tilde”

Prints the source code location of the ~~ and the stack
contents with .debugline.

printdebugdata (–) gforth “print-debug-data”

Chapter 5: Forth Words 335

.debugline (nfile nline –) gforth “print-debug-line”

Print the source code location indicated by nfile
nline, and additional debugging information; the default
.debugline prints the additional information with
printdebugdata.

debug-fid (– file-id) gforth “debug-fid”

~~ (and assertions) will usually print the wrong file
name if a marker is executed in the same file after their
occurance. They will print ‘*somewhere*’ as file name if a
marker is executed in the same file before their occurance.

once (–) unknown “once”

do the following up to THEN only once

~~bt (–) unknown “~~bt”

print stackdump and backtrace

~~1bt (–) unknown “~~1bt”

print stackdump and backtrace once

??? (–) unknown “???”

Open a debuging shell

WTF?? (–) unknown “WTF??”

Open a debugging shell with backtrace and stack dump

!!FIXME!! (–) unknown “!!FIXME!!”

word that should never be reached

replace-word (xt1 xt2 –) gforth “replace-word”

make xt2 do xt1, both need to be colon definitions

~~Variable ("name" –) unknown “~~Variable”

Variable that will be watched on every access

~~Value (n "name" –) unknown “~~Value”

Chapter 5: Forth Words 336

Value that will be watched on every access

+ltrace (–) unknown “+ltrace”

turn on line tracing

-ltrace (unknown) unknown “-ltrace”

turn off line tracing

view ("name" –) gforth “view”

locate ("name" –) gforth “locate”

Show the source code of the word name and set the
current location there.

edit ("name" –) gforth “edit”

Enter the editor at the location of "name"

#loc (nline nchar "file" –) unknown “#loc”

set next word’s location to nline nchar in "file"

5.24.9 Assertions

It is a good idea to make your programs self-checking,
especially if you make an assumption that may become
invalid during maintenance (for example, that a certain
field of a data structure is never zero). Gforth supports
assertions for this purpose. They are used like this:

assert(flag)

The code between assert(and) should compute a
flag, that should be true if everything is alright and false
otherwise. It should not change anything else on the stack.
The overall stack effect of the assertion is (--). E.g.

assert(1 1 + 2 =) \ what we learn in school

assert(dup 0<>) \ assert that the top of stack is not zero

assert(false) \ this code should not be reached

Chapter 5: Forth Words 337

The need for assertions is different at different times.
During debugging, we want more checking, in production
we sometimes care more for speed. Therefore, assertions
can be turned off, i.e., the assertion becomes a comment.
Depending on the importance of an assertion and the time
it takes to check it, you may want to turn off some asser-
tions and keep others turned on. Gforth provides several
levels of assertions for this purpose:

assert0((–) gforth “assert-zero”

Important assertions that should always be turned on.

assert1((–) gforth “assert-one”

Normal assertions; turned on by default.

assert2((–) gforth “assert-two”

Debugging assertions.

assert3((–) gforth “assert-three”

Slow assertions that you may not want to turn on in
normal debugging; you would turn them on mainly for
thorough checking.

assert((–) gforth “assert(”

Equivalent to assert1(

) (–) gforth “close-paren”

End an assertion. Generic end, can be used for other
similar purposes

The variable assert-level specifies the highest asser-
tions that are turned on. I.e., at the default assert-level
of one, assert0(and assert1(assertions perform check-
ing, while assert2(and assert3(assertions are treated
as comments.

The value of assert-level is evaluated at compile-
time, not at run-time. Therefore you cannot turn

Chapter 5: Forth Words 338

assertions on or off at run-time; you have to set the
assert-level appropriately before compiling a piece of
code. You can compile different pieces of code at different
assert-levels (e.g., a trusted library at level 1 and
newly-written code at level 3).

assert-level (– a-addr) gforth “assert-level”

All assertions above this level are turned off.

If an assertion fails, a message compatible with Emacs’
compilation mode is produced and the execution is aborted
(currently with ABORT". If there is interest, we will intro-
duce a special throw code. But if you intend to catch a
specific condition, using throw is probably more appropri-
ate than an assertion).

Assertions (and ~~) will usually print the wrong file
name if a marker is executed in the same file after their
occurance. They will print ‘*somewhere*’ as file name if a
marker is executed in the same file before their occurance.

Definitions in Standard Forth for these assertion words
are provided in compat/assert.fs.

5.24.10 Singlestep Debugger

The singlestep debugger works only with the engine
gforth-itc.

When you create a new word there’s often the need to
check whether it behaves correctly or not. You can do this
by typing dbg badword. A debug session might look like
this:

: badword 0 DO i . LOOP ; ok

2 dbg badword

: badword

Scanning code...

Chapter 5: Forth Words 339

Nesting debugger ready!

400D4738 8049BC4 0 -> [2] 00002 00000

400D4740 8049F68 DO -> [0]

400D4744 804A0C8 i -> [1] 00000

400D4748 400C5E60 . -> 0 [0]

400D474C 8049D0C LOOP -> [0]

400D4744 804A0C8 i -> [1] 00001

400D4748 400C5E60 . -> 1 [0]

400D474C 8049D0C LOOP -> [0]

400D4758 804B384 ; -> ok

Each line displayed is one step. You always have to
hit return to execute the next word that is displayed. If
you don’t want to execute the next word in a whole, you
have to type n for nest. Here is an overview what keys
are available:

RET

Next; Execute the next word.

n
Nest; Single step through next word.

u
Unnest; Stop debugging and execute rest of word. If we
got to this word with nest, continue debugging with the
calling word.

d
Done; Stop debugging and execute rest.

s
Stop; Abort immediately.

Debugging large application with this mechanism is
very difficult, because you have to nest very deeply into

Chapter 5: Forth Words 340

the program before the interesting part begins. This takes
a lot of time.

To do it more directly put a BREAK: command into your
source code. When program execution reaches BREAK: the
single step debugger is invoked and you have all the fea-
tures described above.

If you have more than one part to debug it is useful
to know where the program has stopped at the moment.
You can do this by the BREAK" string" command. This
behaves like BREAK: except that string is typed out when
the “breakpoint” is reached.

dbg ("name" –) gforth “dbg”

break: (–) gforth “break:”

break" (’ccc"’ –) gforth “break"”

5.24.11 Code Coverage and Execution
Frequency

If you run extensive tests on your code, you often want to
figure out if the tests exercise all parts of the code. This is
called (test) coverage. The file coverage.fs contains tools
for measuring the coverage as well as execution frequency.

Code coverage inserts counting code in every ba-
sic block (straight-line code sequence) loaded after
coverage.fs. Each time that code is run, it increments
the counter for that basic block. Later you can show the
source file with the counts inserted in these basic blocks.

.coverage (–) gforth-exp “.coverage”

Show code with execution frequencies.

annotate-cov (–) gforth-exp “annotate-cov”

For every file with coverage information, produce a
.cov file that has the execution frequencies inserted.

Chapter 5: Forth Words 341

We recommend to use bw-cover first (with the default
color-cover you get escape sequences in the files).

cov% (–) gforth-exp “cov%”

Print the percentage of basic blocks loaded after
coverage.fs that are executed at least once.

.cover-raw (–) gforth-exp “.cover-raw”

Print raw execution counts.

By default, the counts are shown in colour (using ANSI
escape sequences), but you can use bw-cover to show them
in parenthesized form without escape sequences.

bw-cover (–) unknown “bw-cover”

Print execution counts in parentheses (source-code
compatible).

color-cover (–) unknown “color-cover”

Print execution counts in colours (default).

You can save and reload the coverage counters in binary
format, to aggregate coverage counters across several test
runs.

save-cov (–) gforth-exp “save-cov”

Save coverage counters.

load-cov (–) gforth-exp “load-cov”

Load coverage counters.

cov+ (–) gforth-exp “cov+”

Add a coverage tag here.

Chapter 5: Forth Words 342

5.25 Multitasker

Gforth offers two multitaskers: a traditional, cooperative
round-robin multitasker, and a pthread-based multitasker
which allows to run several threads concurrently on multi-
core machines. The pthread-based is now marked as exper-
imental feature, as standardization of Forth multitaskers
will likely change the names of words without changing
their semantics.

5.25.1 Ptheads

Tasks can be created with newtask or newtask4 with a
given amount of stack space (either all the same or each
stack’s size specified); these tasks neet to be activated or
send an xt through initiate. Tasks can stop themselves
when they are done or wait for new instructions.

newtask (stacksize – task) gforth-experimental “newtask”

creates a task, uses stacksize for stack, rstack, fpstack,
locals

task (stacksize "name" –) gforth-experimental “task”

create a named task with stacksize stacksize

execute-task (xt – task) gforth-experimental “execute-
task”

create a new task task and initiate it with xt

stacksize (– n) gforth-experimental “stacksize”

stacksize for data stack

newtask4 (dsize rsize fsize lsize – task) gforth-experimental “newtask4”

creates a task, each stack individually sized

stacksize4 (– dsize fsize rsize lsize) gforth-experimental “stacksize4”

Chapter 5: Forth Words 343

This gives you the system stack sizes

activate (task –) gforth-experimental “activate”

activates a task. The remaining part of the word calling
activate will be executed in the context of the task.

pass (x1 .. xn n task –) gforth-experimental “pass”

activates task, and passes n parameters from the data
stack

initiate (xt task –) gforth-experimental “initiate”

pass an xt to a task (VFX compatible)

pause (–) gforth-experimental “pause”

voluntarily switch to the next waiting task (pause is
the traditional cooperative task switcher; in the pthread
multitasker, you don’t need pause for cooperation, but
you still can use it e.g. when you have to resort to polling
for some reason). This also checks for events in the queue.

restart (task –) gforth-experimental “restart”

Wake a task

halt (task –) gforth-experimental “halt”

Stop a task

stop (–) gforth-experimental “stop”

stops the current task, and waits for events (which may
restart it)

stop-ns (timeout –) gforth-experimental “stop-ns”

Stop with timeout (in nanoseconds), better replace-
ment for ms

A cooperative multitasker can ensure that there is no
other task interacting between two invocations of pause.
Pthreads however are really concurrent tasks (at least on
a multi-core CPU), and therefore, several techniques to
avoid conflicts when accessing the same resources.

Chapter 5: Forth Words 344

5.25.1.1 Special User Variables

Aside from the user variables that are already defined in
the kernel, tasks may want to have user values and user
defers, optain the offset of a user variable, or the address of
those related to another task to initialize that task’s user
area.

UValue ("name" –) unknown “UValue”

UDefer ("name" –) gforth-experimental “UDefer”

Define a per-thread deferred word

user’ (’user’ – n) gforth-experimental “user”’

USER’ computes the task offset of a user variable

’s (user task – user’) gforth-experimental “’s”

get the tasks’s address of our user variable

5.25.1.2 Semaphores

Semaphores can only be aquired by one thread, all other
threads have to wait until the semapohre is released.

semaphore ("name" –) gforth-experimental “semaphore”

create a named semaphore "name" \\ "name"-
execution: (– semaphore)

lock (semaphore –) gforth-experimental “lock”

lock the semaphore

unlock (semaphore –) gforth-experimental “unlock”

unlock the semaphore

The other approach to prevent concurrent access is the
critical section. Here, we implement a critical section with
a semaphore, so you have to specify the semaphore which

Chapter 5: Forth Words 345

is used for the critical section. Only those critical sections
which use the same semaphore are mutually exclusive.

critical-section (xt semaphore –) gforth-experimental “critical-
section”

implement a critical section that will unlock the
semaphore even in case there’s an exception within.

5.25.1.3 Atomic operations

Atomic operations can be used to synchronize tasks with-
out using slow OS primitives.

!@ (u1 a-addr – u2) gforth-experimental “store-fetch”

load u2 from a addr, and store u1 there, as atomic
operation

+!@ (u1 a-addr – u2) gforth-experimental “add-store-
fetch”

load u2 from a addr, and increment this location by
u1, as atomic operation

?!@ (unew uold a-addr – uprev) gforth-experimental “question-
store-fetch”

load uprev from a addr, compare it to uold, and if
equal, store unew there, as atomic operation

barrier (–) gforth-experimental “barrier”

Insert a full memory barrier

5.25.1.4 Message Queues

Gforth implements executable message queues for event
driven programs: you send instructions to other tasks, en-
closed in <event and event>; the entire event sequence
is executed atomically. You can pass integers, floats, and
strings (only the addresses, so treat the string as read-only

Chapter 5: Forth Words 346

after you have send it to another task). The messages you
send are defined with event: name, which, when invoked,
will add the code for its execution to the message queue,
and when recieved, will execute the code following. The
message queue is queried when you stop a task, or when
you check for events with ?events. You can define a max-
imum of 256 different events.

<event (–) gforth-experimental “<event”

starts a sequence of events.

event> (task –) gforth-experimental “event>”

ends a sequence and sends it to the mentioned task

event: ("name" –) gforth-experimental “event:”

defines an event and the reaction to it as Forth code.
If name is invoked, the event gets assembled to the event
buffer. If the event name is received, the Forth definition
that follows the event declaration is executed.

?events (–) gforth-experimental “?events”

checks for events and executes them

event-loop (–) gforth-experimental “event-loop”

Tasks that are controlled by sending events to them
should go into an event-loop

elit, (x –) gforth-experimental “elit,”

sends a literal

e$, (addr u –) gforth-experimental “e$,”

sends a string (actually only the address and the count,
because it’s shared memory

eflit, (x –) gforth-experimental “eflit,”

sends a float

The naming conventions for events is :>name.

Chapter 5: Forth Words 347

5.25.1.5 Conditions

The pthreads library also provides conditional variables,
which allow to wait for a condition. Using the message
queue is generally preferred.

cond ("name" –) gforth-experimental “cond”

create a named condition

pthread_cond_signal (cond – r) gforth-experimental “pthread cond signal”

pthread_cond_broadcast (cond – r) gforth-experimental “pthread cond broadcast”

pthread_cond_wait (cond mutex – r) gforth-experimental “pthread cond wait”

pthread_cond_timedwait (cond mutex abstime – r) gforth-
experimental “pthread cond timedwait”

5.26 C Interface

The C interface is now mostly complete, callbacks have
been added, but for structs, we use Forth2012 structs,
which don’t have independent scopes. The offsets of those
structs are extracted from header files with a SWIG plu-
gin, which is still not completed.

5.26.1 Calling C functions

Once a C function is declared (see see Section 5.26.2
[Declaring C Functions], page 349), you can call it as fol-
lows: You push the arguments on the stack(s), and then
call the word for the C function. The arguments have to
be pushed in the same order as the arguments appear in
the C documentation (i.e., the first argument is deepest
on the stack). Integer and pointer arguments have to be
pushed on the data stack, floating-point arguments on the
FP stack; these arguments are consumed by the called C
function.

Chapter 5: Forth Words 348

On returning from the C function, the return value, if
any, resides on the appropriate stack: an integer return
value is pushed on the data stack, an FP return value on
the FP stack, and a void return value results in not pushing
anything. Note that most C functions have a return value,
even if that is often not used in C; in Forth, you have to
drop this return value explicitly if you do not use it.

The C interface automatically converts between the C
type and the Forth type as necessary, on a best-effort basis
(in some cases, there may be some loss).

As an example, consider the POSIX function lseek():

off_t lseek(int fd, off_t offset, int whence);

This function takes three integer arguments, and re-
turns an integer argument, so a Forth call for setting the
current file offset to the start of the file could look like this:

fd @ 0 SEEK_SET lseek -1 = if

... \ error handling

then

You might be worried that an off_t does not fit into a
cell, so you could not pass larger offsets to lseek, and might
get only a part of the return values. In that case, in your
declaration of the function (see Section 5.26.2 [Declaring C
Functions], page 349) you should declare it to use double-
cells for the off t argument and return value, and maybe
give the resulting Forth word a different name, like dlseek;
the result could be called like this:

fd @ 0. SEEK_SET dlseek -1. d= if

... \ error handling

then

Chapter 5: Forth Words 349

Passing and returning structs or unions is currently not
supported by our interface28.

Calling functions with a variable number of arguments
(variadic functions, e.g., printf()) is only supported by
having you declare one function-calling word for each ar-
gument pattern, and calling the appropriate word for the
desired pattern.

5.26.2 Declaring C Functions

Before you can call lseek or dlseek, you have to declare
it. The declaration consists of two parts:

The C part
is the C declaration of the function, or more typically
and portably, a C-style #include of a file that contains
the declaration of the C function.

The Forth part
declares the Forth types of the parameters and the Forth
word name corresponding to the C function.

For the words lseek and dlseek mentioned earlier, the
declarations are:

\c #define _FILE_OFFSET_BITS 64

\c #include <sys/types.h>

\c #include <unistd.h>

c-function lseek lseek n n n -- n

c-function dlseek lseek n d n -- d

The C part of the declarations is prefixed by \c, and the
rest of the line is ordinary C code. You can use as many

28 If you know the calling convention of your C compiler, you usually
can call such functions in some way, but that way is usually not
portable between platforms, and sometimes not even between C
compilers.

Chapter 5: Forth Words 350

lines of C declarations as you like, and they are visible for
all further function declarations.

The Forth part declares each interface word with
c-function, followed by the Forth name of the word, the
C name of the called function, and the stack effect of the
word. The stack effect contains an arbitrary number of
types of parameters, then --, and then exactly one type
for the return value. The possible types are:

n

single-cell integer

a

address (single-cell)

d

double-cell integer

r

floating-point value

func

C function pointer

void

no value (used as return type for void functions)

To deal with variadic C functions, you can declare one
Forth word for every pattern you want to use, e.g.:

\c #include <stdio.h>

c-function printf-nr printf a n r -- n

c-function printf-rn printf a r n -- n

Note that with C functions declared as variadic (or if
you don’t provide a prototype), the C interface has no C
type to convert to, so no automatic conversion happens,
which may lead to portability problems in some cases. You

Chapter 5: Forth Words 351

can add the C type cast in curly braces after the Forth
type. This also allows to pass e.g. structs to C functions,
which in Forth cannot live on the stack.

c-function printfll printf a n{(long long)} -- n

c-function pass-struct pass_struct a{*(struct foo *)} -- n

This typecasting is not available to return values, as C
does not allow typecasts for lvalues.

\c ("rest-of-line" –) gforth “backslash-c”

One line of C declarations for the C interface

c-function ("forth-name" "c-name" "{type}" "—" "type" –
) gforth “c-function”

Define a Forth word forth-name. Forth-name has the
specified stack effect and calls the C function c-name.

c-value ("forth-name" "c-name" "—" "type" –) gforth “c-
value”

Define a Forth word forth-name. Forth-name has the
specified stack effect and gives the C value of c-name.

c-variable ("forth-name" "c-name" –) gforth “c-
variable”

Define a Forth word forth-name. Forth-name returns
the address of c-name.

In order to work, this C interface invokes GCC at run-
time and uses dynamic linking. If these features are not
available, there are other, less convenient and less portable
C interfaces in lib.fs and oldlib.fs. These interfaces
are mostly undocumented and mostly incompatible with
each other and with the documented C interface; you can
find some examples for the lib.fs interface in lib.fs.

Chapter 5: Forth Words 352

5.26.3 Calling C function pointers from
Forth

If you come across a C function pointer (e.g., in some C-
constructed structure) and want to call it from your Forth
program, you could use the structures as described above
by defining a macro. Or you use c-funptr.

c-funptr ("forth-name" <{>"c-typecast"<}> "{type}" "—
" "type" –) gforth “c-funptr”

Define a Forth word forth-name. Forth-name has
the specified stack effect plus the called pointer on top
of stack, i.e. ({type} ptr -- type) and calls the C
function pointer ptr using the typecast or struct access
c-typecast.

Let us assume that there is a C function pointer type
func1 defined in some header file func1.h, and you know
that these functions take one integer argument and return
an integer result; and you want to call functions through
such pointers. Just define

\c #include <func1.h>

c-funptr call-func1 {((func1)ptr)} n -- n

and then you can call a function pointed to by, say
func1a as follows:

-5 func1a call-func1 .

The Forth word call-func1 is similar to execute, ex-
cept that it takes a C func1 pointer instead of a Forth
execution token, and it is specific to func1 pointers. For
each type of function pointer you want to call from Forth,
you have to define a separate calling word.

Chapter 5: Forth Words 353

5.26.4 Defining library interfaces

You can give a name to a bunch of C function declarations
(a library interface), as follows:

c-library lseek-lib

\c #define _FILE_OFFSET_BITS 64

...

end-c-library

The effect of giving such a name to the interface is that
the names of the generated files will contain that name,
and when you use the interface a second time, it will use
the existing files instead of generating and compiling them
again, saving you time. The generated file contains a 128
bit hash (not cryptographically safe, but good enough for
that purpose) of the source code, so changing the decla-
rations will cause a new compilation. Normally these files
are cached in $HOME/.gforth/architecture/libcc-named,
so if you experience problems or have other reasons to force
a recompilation, you can delete the files there.

Note that you should use c-library before everything
else having anything to do with that library, as it resets
some setup stuff. The idea is that the typical use is to
put each c-library...end-c-library unit in its own file,
and to be able to include these files in any order. All
other words dealing with the C interface are hidden in the
vocabulary c-lib, which is put on top o the search stack
by c-library and removed by end-c-library.

Note that the library name is not allocated in the dic-
tionary and therefore does not shadow dictionary names.
It is used in the file system, so you have to use naming
conventions appropriate for file systems. The name is also
used as part of the C symbols, but characters outside the

Chapter 5: Forth Words 354

legal C symbol names are replaced with underscores. Also,
you shall not call a function you declare after c-library
before you perform end-c-library.

A major benefit of these named library interfaces is
that, once they are generated, the tools used to gener-
ated them (in particular, the C compiler and libtool) are
no longer needed, so the interface can be used even on
machines that do not have the tools installed. The build
system of Gforth can even cross-compile these libraries,
so that the libraries are available for plattforms on which
build tools aren’t installed.

c-library-name (c-addr u –) gforth “c-library-name”

Start a C library interface with name c-addr u.

c-library ("name" –) gforth “c-library”

Parsing version of c-library-name

end-c-library (–) gforth “end-c-library”

Finish and (if necessary) build the latest C library in-
terface.

5.26.5 Declaring OS-level libraries

For calling some C functions, you need to link with a spe-
cific OS-level library that contains that function. E.g., the
sin function requires linking a special library by using the
command line switch -lm. In our C iterface you do the
equivalent thing by calling add-lib as follows:

clear-libs

s" m" add-lib

\c #include <math.h>

c-function sin sin r -- r

First, you clear any libraries that may have been de-
clared earlier (you don’t need them for sin); then you add

Chapter 5: Forth Words 355

the m library (actually libm.so or somesuch) to the cur-
rently declared libraries; you can add as many as you need.
Finally you declare the function as shown above. Typically
you will use the same set of library declarations for many
function declarations; you need to write only one set for
that, right at the beginning.

Note that you must not call clear-libs inside
c-library...end-c-library; however, c-library

performs the function of clear-libs, so clear-libs is
not necessary, and you usually want to put add-lib calls
inside c-library...end-c-library.

clear-libs (–) gforth “clear-libs”

Clear the list of libs

add-lib (c-addr u –) gforth “add-lib”

Add library libstring to the list of libraries, where string
is represented by c-addr u.

add-libpath (c-addr u –) gforth “add-libpath”

Add path string to the list of library search pathes,
where string is represented by c-addr u.

add-incdir (c-addr u –) gforth “add-incdir”

Add path c-addr u to the list of include search pathes

add-cflags (c-addr u –) gforth “add-cflags”

add any kind of cflags to compilation

add-ldflags (c-addr u –) gforth “add-ldflags”

add flag to linker

5.26.6 Callbacks

In some cases you have to pass a function pointer to a
C function, i.e., the library wants to call back to your

Chapter 5: Forth Words 356

application (and the pointed-to function is called a call-
back function). You can pass the address of an existing
C function (that you get with lib-sym, see Section 5.26.8
[Low-Level C Interface Words], page 357), but if there is
no appropriate C function, you probably want to define
the function as a Forth word. Then you need to generate
a callback as described below:

You can generate C callbacks from Forth code with
c-callback.

c-callback ("forth-name" "{type}" "—" "type" –) gforth “c-
callback”

Define a callback instantiator with the given signature.
The callback instantiator forth-name (xt -- addr) takes
an xt, and returns the address of the C function handling
that callback.

This precompiles a number of callback functions (up to
the value callback#). The prototype of the C function is
deduced from its Forth signature. If this is not sufficient,
you can add types in curly braces after the Forth type.

c-callback vector4double: f f f f -- void

c-callback vector4single: f{float} f{float} f{float} f{float} -- void

5.26.7 How the C interface works

The documented C interface works by generating a C code
out of the declarations.

In particular, for every Forth word declared with
c-function, it generates a wrapper function in C that
takes the Forth data from the Forth stacks, and calls the
target C function with these data as arguments. The C
compiler then performs an implicit conversion between
the Forth type from the stack, and the C type for the

Chapter 5: Forth Words 357

parameter, which is given by the C function prototype.
After the C function returns, the return value is likewise
implicitly converted to a Forth type and written back on
the stack.

The \c lines are literally included in the C code (but
without the \c), and provide the necessary declarations so
that the C compiler knows the C types and has enough
information to perform the conversion.

These wrapper functions are eventually compiled and
dynamically linked into Gforth, and then they can be
called.

The libraries added with add-lib are used in the com-
pile command line to specify dependent libraries with
-llib, causing these libraries to be dynamically linked
when the wrapper function is linked.

5.26.8 Low-Level C Interface Words

open-lib (c-addr1 u1 – u2) gforth “open-lib”

lib-sym (c-addr1 u1 u2 – u3) gforth “lib-sym”

lib-error (– c-addr u) gforth “lib-error”

Error message for last failed open-lib or lib-sym.

call-c (... w – ...) gforth “call-c”

Call the C function pointed to by w. The C function
has to access the stack itself. The stack pointers are ex-
ported into a ptrpair structure passed to the C function,
and returned in that form.

5.26.9 Automated interface generation
using SWIG

SWIG, the Simple Wrapper Interface Generator, is used
to create C interfaces for a lot of programming languages.

Chapter 5: Forth Words 358

The SWIG version extended with a Forth module can
be found on github (https://github.com/GeraldWodni/
swig).

5.26.9.1 Basic operation

C-headers are parsed and converted to Forth-Sourcecode
which uses the previously describe C interface functions.

5.26.9.2 Detailed operation:

1. Select a target, in this example we are using example.h

2. Create an interface file for the header. This can be
used to pass options, switches and define variables. In
the simplest case it just instructs to translate all of
example.h:

%module example

%insert("include")

{

#include "example.h"

}

%include "example.h"

3. Use SWIG to create a .fsi-c file.
swig -forth -stackcomments -use-structs -

enumcomments -o example-fsi.c example.i.
FSI stands “Forth Source Independent” meaning it
can be transferred to any host having a C-compiler.
SWIG is not required past this point.

4. On the target machine compile the .fsi-c file to a .fsx
(x stands for executable)
gcc -o example.fsx example-fsi.c

The compilation will resolve all constants to the values
on the target.

https://github.com/GeraldWodni/swig
https://github.com/GeraldWodni/swig

Chapter 5: Forth Words 359

5. The last step is to run the executable and capture its
output to a .fs “Forth Source” file.
./example.fsx -gforth > example.fs

This code can now be used on the target platform.

5.26.9.3 Examples

You can find some examples in SWIG’s Forth Example
section (https://github.com/GeraldWodni/swig/tree/
master/Examples/forth).

A lot of interface files can be found in Forth Posix
C-Interface (https://github.com/GeraldWodni/
posix) and Forth C-Interface Modules (https://github.
com/GeraldWodni/forth-c-interfaces).

Contribution to the Forth C-Interface Module
repository (https://github.com/GeraldWodni/
forth-c-interfaces) is always welcome.

5.26.10 Migrating from Gforth 0.7

In this version, you can use \c, c-function and add-lib

only inside c-library...end-c-library. add-lib now al-
ways starts from a clean slate inside a c-library, so you
don’t need to use clear-libs in most cases.

If you have a program that uses these words out-
side c-library...end-c-library, just wrap them in
c-library...end-c-library. You may have to add some
instances of add-lib, however.

5.27 Assembler and Code Words

https://github.com/GeraldWodni/swig/tree/master/Examples/forth
https://github.com/GeraldWodni/swig/tree/master/Examples/forth
https://github.com/GeraldWodni/swig/tree/master/Examples/forth
https://github.com/GeraldWodni/posix
https://github.com/GeraldWodni/posix
https://github.com/GeraldWodni/posix
https://github.com/GeraldWodni/forth-c-interfaces
https://github.com/GeraldWodni/forth-c-interfaces
https://github.com/GeraldWodni/forth-c-interfaces
https://github.com/GeraldWodni/forth-c-interfaces
https://github.com/GeraldWodni/forth-c-interfaces

Chapter 5: Forth Words 360

5.27.1 Definitions in assembly language

Gforth provides ways to implement words in assembly lan-
guage (using abi-code...end-code), and also ways to de-
fine defining words with arbitrary run-time behaviour (like
does>), where (unlike does>) the behaviour is not defined
in Forth, but in assembly language (with ;code).

However, the machine-independent nature of Gforth
poses a few problems: First of all, Gforth runs on sev-
eral architectures, so it can provide no standard assem-
bler. It does provide assemblers for several of the architec-
tures it runs on, though. Moreover, you can use a system-
independent assembler in Gforth, or compile machine code
directly with , and c,.

Another problem is that the virtual machine registers
of Gforth (the stack pointers and the virtual machine in-
struction pointer) depend on the installation and engine.
Also, which registers are free to use also depend on the
installation and engine. So any code written to run in the
context of the Gforth virtual machine is essentially limited
to the installation and engine it was developed for (it may
run elsewhere, but you cannot rely on that).

Fortunately, you can define abi-code words in Gforth
that are portable to any Gforth running on a platform
with the same calling convention (ABI); typically this
means portability to the same architecture/OS combina-
tion, sometimes crossing OS boundaries).

assembler (–) tools-ext “assembler”

A vocubulary: Replaces the wordlist at the top of the
search order with the assembler wordlist.

init-asm (–) gforth “init-asm”

Chapter 5: Forth Words 361

Pushes the assembler wordlist on the search order.

abi-code ("name" – colon-sys) gforth “abi-code”

Start a native code definition that is called using
the platform’s ABI conventions corresponding to the C-
prototype:

Cell *function(Cell *sp, Float **fpp);

The FP stack pointer is passed in by providing a refer-
ence to a memory location containing the FP stack pointer
and is passed out by storing the changed FP stack pointer
there (if necessary).

end-code (colon-sys –) gforth “end-code”

End a code definition. Note that you have to assemble
the return from the ABI call (for abi-code) or the dispatch
to the next VM instruction (for code and ;code) yourself.

code ("name" – colon-sys) tools-ext “code”

Start a native code definition that runs in the context
of the Gforth virtual machine (engine). Such a definition
is not portable between Gforth installations, so we recom-
mend using abi-code instead of code. You have to end a
code definition with a dispatch to the next virtual machine
instruction.

;code (compilation. colon-sys1 – colon-sys2) tools-
ext “semicolon-code”

The code after ;code becomes the behaviour of the
last defined word (which must be a created word). The
same caveats apply as for code, so we recommend using
;abi-code instead.

flush-icache (c-addr u –) gforth “flush-icache”

Make sure that the instruction cache of the processor
(if there is one) does not contain stale data at c-addr and

Chapter 5: Forth Words 362

u bytes afterwards. END-CODE performs a flush-icache

automatically. Caveat: flush-icache might not work on
your installation; this is usually the case if direct threading
is not supported on your machine (take a look at your
machine.h) and your machine has a separate instruction
cache. In such cases, flush-icache does nothing instead
of flushing the instruction cache.

If flush-icache does not work correctly, abi-code

words etc. will not work (reliably), either.

The typical usage of these words can be shown most
easily by analogy to the equivalent high-level defining
words:

: foo abi-code foo

<high-level Forth words> <assembler>

; end-code

: bar : bar

<high-level Forth words> <high-level Forth words>

CREATE CREATE

<high-level Forth words> <high-level Forth words>

DOES> ;code

<high-level Forth words> <assembler>

; end-code

For using abi-code, take a look at the ABI documen-
tation of your platform to see how the parameters are
passed (so you know where you get the stack pointers)
and how the return value is passed (so you know where
the data stack pointer is returned). The ABI documenta-
tion also tells you which registers are saved by the caller
(caller-saved), so you are free to destroy them in your code,
and which registers have to be preserved by the called
word (callee-saved), so you have to save them before using

Chapter 5: Forth Words 363

them, and restore them afterwards. For some architec-
tures and OSs we give short summaries of the parts of
the calling convention in the appropriate sections. More
reverse-engineering oriented people can also find out about
the passing and returning of the stack pointers through see
abi-call.

Most ABIs pass the parameters through registers, but
some (in particular the most common 386 (aka IA-32) call-
ing conventions) pass them on the architectural stack. The
common ABIs all pass the return value in a register.

Other things you need to know for using abi-code is
that both the data and the FP stack grow downwards (to-
wards lower addresses) in Gforth, with 1 cells size per
cell, and 1 floats size per FP value.

Here’s an example of using abi-code on the 386 archi-
tecture:

abi-code my+ (n1 n2 -- n)

4 sp d) ax mov \ sp into return reg

ax) cx mov \ tos

4 # ax add \ update sp (pop)

cx ax) add \ sec = sec+tos

ret \ return from my+

end-code

An AMD64 variant of this example can be found in
Section 5.27.5 [AMD64 Assembler], page 369.

Here’s a 386 example that deals with FP values:

abi-code my-f+ (r1 r2 -- r)

8 sp d) cx mov \ load address of fp

cx) dx mov \ load fp

.fl dx) fld \ r2

8 # dx add \ update fp

Chapter 5: Forth Words 364

.fl dx) fadd \ r1+r2

.fl dx) fstp \ store r

dx cx) mov \ store new fp

4 sp d) ax mov \ sp into return reg

ret \ return from my-f+

end-code

5.27.2 Common Assembler

The assemblers in Gforth generally use a postfix syntax,
i.e., the instruction name follows the operands.

The operands are passed in the usual order (the same
that is used in the manual of the architecture). Since they
all are Forth words, they have to be separated by spaces;
you can also use Forth words to compute the operands.

The instruction names usually end with a ,. This
makes it easier to visually separate instructions if you put
several of them on one line; it also avoids shadowing other
Forth words (e.g., and).

Registers are usually specified by number; e.g., (deci-
mal) 11 specifies registers R11 and F11 on the Alpha ar-
chitecture (which one, depends on the instruction). The
usual names are also available, e.g., s2 for R11 on Alpha.

Control flow is specified similar to normal Forth
code (see Section 5.8.6 [Arbitrary control structures],
page 138), with if,, ahead,, then,, begin,, until,,
again,, cs-roll, cs-pick, else,, while,, and repeat,.
The conditions are specified in a way specific to each
assembler.

The rest of this section is of interest mainly for those
who want to define code words (instead of the more
portable abi-code words).

Chapter 5: Forth Words 365

Note that the register assignments of the Gforth engine
can change between Gforth versions, or even between dif-
ferent compilations of the same Gforth version (e.g., if you
use a different GCC version). If you are using CODE instead
of ABI-CODE, and you want to refer to Gforth’s registers
(e.g., the stack pointer or TOS), I recommend defining
your own words for refering to these registers, and using
them later on; then you can adapt to a changed register
assignment.

The most common use of these registers is to end a code
definition with a dispatch to the next word (the next rou-
tine). A portable way to do this is to jump to ’ noop

>code-address (of course, this is less efficient than inte-
grating the next code and scheduling it well). When using
ABI-CODE, you can just assemble a normal subroutine re-
turn (but make sure you return the data stack pointer).

Another difference between Gforth versions is that the
top of stack is kept in memory in gforth and, on most
platforms, in a register in gforth-fast. For ABI-CODE

definitions, any stack caching registers are guaranteed to
be flushed to the stack, allowing you to reliably access the
top of stack in memory.

5.27.3 Common Disassembler

You can disassemble a code word with see (see
Section 5.24.8 [Debugging], page 334). You can
disassemble a section of memory with

discode (addr u –) gforth “discode”

hook for the disassembler: disassemble u bytes of code
at addr

Chapter 5: Forth Words 366

There are two kinds of disassembler for Gforth: The
Forth disassembler (available on some CPUs) and the
gdb disassembler (available on platforms with gdb and
mktemp). If both are available, the Forth disassembler is
used by default. If you prefer the gdb disassembler, say

’ disasm-gdb is discode

If neither is available, discode performs dump.

The Forth disassembler generally produces output that
can be fed into the assembler (i.e., same syntax, etc.). It
also includes additional information in comments. In par-
ticular, the address of the instruction is given in a comment
before the instruction.

The gdb disassembler produces output in the same
format as the gdb disassemble command (see Section
“Source and machine code” in Debugging with GDB), in
the default flavour (AT&T syntax for the 386 and AMD64
architectures).

Seemay display more or less than the actual code of the
word, because the recognition of the end of the code is un-
reliable. You can use discode if it did not display enough.
It may display more, if the code word is not immediately
followed by a named word. If you have something else
there, you can follow the word with align latest , to
ensure that the end is recognized.

5.27.4 386 Assembler

The 386 assembler included in Gforth was written by
Bernd Paysan, it’s available under GPL, and originally
part of bigFORTH.

The 386 disassembler included in Gforth was written
by Andrew McKewan and is in the public domain.

Chapter 5: Forth Words 367

The disassembler displays code in an Intel-like prefix
syntax.

The assembler uses a postfix syntax with AT&T-style
parameter order (i.e., destination last).

The assembler includes all instruction of the Athlon,
i.e. 486 core instructions, Pentium and PPro extensions,
floating point, MMX, 3Dnow!, but not ISSE. It’s an inte-
grated 16- and 32-bit assembler. Default is 32 bit, you can
switch to 16 bit with .86 and back to 32 bit with .386.

There are several prefixes to switch between different
operation sizes, .b for byte accesses, .w for word accesses,
.d for double-word accesses. Addressing modes can be
switched with .wa for 16 bit addresses, and .da for 32 bit
addresses. You don’t need a prefix for byte register names
(AL et al).

For floating point operations, the prefixes are .fs

(IEEE single), .fl (IEEE double), .fx (extended), .fw
(word), .fd (double-word), and .fq (quad-word). The
default is .fx, so you need to specify .fl explicitly when
dealing with Gforth FP values.

The MMX opcodes don’t have size prefixes, they
are spelled out like in the Intel assembler. Instead of
move from and to memory, there are PLDQ/PLDD and
PSTQ/PSTD.

The registers lack the ’e’ prefix; even in 32 bit mode,
eax is called ax. Immediate values are indicated by post-
fixing them with #, e.g., 3 #. Here are some examples of
addressing modes in various syntaxes:

Gforth Intel (NASM) AT&T (gas) Name

.w ax ax %ax register (16 bit)

ax eax %eax register (32 bit)

Chapter 5: Forth Words 368

3 # offset 3 $3 immediate

1000 #) byte ptr 1000 1000 displacement

bx) [ebx] (%ebx) base

100 di d) 100[edi] 100(%edi) base+displacement

20 ax *4 i#) 20[eax*4] 20(,%eax,4) (index*scale)+displacement

di ax *4 i) [edi][eax*4] (%edi,%eax,4) base+(index*scale)

4 bx cx di) 4[ebx][ecx] 4(%ebx,%ecx) base+index+displacement

12 sp ax *2 di) 12[esp][eax*2] 12(%esp,%eax,2) base+(index*scale)+displacement

You can use L) and LI) instead of D) and DI) to enforce
32-bit displacement fields (useful for later patching).

Some example of instructions are:

ax bx mov \ move ebx,eax

3 # ax mov \ mov eax,3

100 di d) ax mov \ mov eax,100[edi]

4 bx cx di) ax mov \ mov eax,4[ebx][ecx]

.w ax bx mov \ mov bx,ax

The following forms are supported for binary instruc-
tions:

<reg> <reg> <inst>

<n> # <reg> <inst>

<mem> <reg> <inst>

<reg> <mem> <inst>

<n> # <mem> <inst>

The shift/rotate syntax is:

<reg/mem> 1 # shl \ shortens to shift without immediate

<reg/mem> 4 # shl

<reg/mem> cl shl

Precede string instructions (movs etc.) with .b to get
the byte version.

The control structure words IF UNTIL etc. must be
preceded by one of these conditions: vs vc u< u>= 0= 0<>

Chapter 5: Forth Words 369

u<= u> 0< 0>= ps pc < >= <= >. (Note that most of these
words shadow some Forth words when assembler is in
front of forth in the search path, e.g., in code words).
Currently the control structure words use one stack item,
so you have to use roll instead of cs-roll to shuffle them
(you can also use swap etc.).

Based on the Intel ABI (used in Linux), abi-code

words can find the data stack pointer at 4 sp d), and the
address of the FP stack pointer at 8 sp d); the data stack
pointer is returned in ax; Ax, cx, and dx are caller-saved,
so you do not need to preserve their values inside the word.
You can return from the word with ret, the parameters
are cleaned up by the caller.

For examples of 386 abi-code words, see Section 5.27.1
[Assembler Definitions], page 360.

5.27.5 AMD64 (x86 64) Assembler

The AMD64 assembler is a slightly modified version of
the 386 assembler, and as such shares most of the syntax.
Two new prefixes, .q and .qa, are provided to select 64-
bit operand and address sizes respectively. 64-bit sizes are
the default, so normally you only have to use the other
prefixes. Also there are additional register operands R8-
R15.

The registers lack the ’e’ or ’r’ prefix; even in 64 bit
mode, rax is called ax. Additional register operands are
available to refer to the lowest-significant byte of all regis-
ters: R8L-R15L, SPL, BPL, SIL, DIL.

The Linux-AMD64 calling convention is to pass the first
6 integer parameters in rdi, rsi, rdx, rcx, r8 and r9 and
to return the result in rax and rdx; to pass the first 8
FP parameters in xmm0–xmm7 and to return FP results

Chapter 5: Forth Words 370

in xmm0–xmm1. So abi-code words get the data stack
pointer in di and the address of the FP stack pointer in si,
and return the data stack pointer in ax. The other caller-
saved registers are: r10, r11, xmm8-xmm15. This calling
convention reportedly is also used in other non-Microsoft
OSs.

Windows x64 passes the first four integer parameters
in rcx, rdx, r8 and r9 and return the integer result in rax.
The other caller-saved registers are r10 and r11.

On the Linux platform, according to https://uclibc.
org/docs/psABI-x86_64.pdf page 21 the registers AX
CX DX SI DI R8 R9 R10 R11 are available for scratch.

The addressing modes for the AMD64 are:

\ running word A produces a memory error as the registers are not initialised ;-)

ABI-CODE A (--)

500 # AX MOV \ immediate

DX AX MOV \ register

200 AX MOV \ direct addressing

DX) AX MOV \ indirect addressing

40 DX D) AX MOV \ base with displacement

DX CX I) AX MOV \ scaled index

DX CX *4 I) AX MOV \ scaled index

40 DX CX *4 DI) AX MOV \ scaled index with displacement

DI AX MOV \ SP Out := SP in

RET

END-CODE

Here are a few examples of an AMD64 abi-code words:

abi-code my+ (n1 n2 -- n3)

\ SP passed in di, returned in ax, address of FP passed in si

8 di d) ax lea \ compute new sp in result reg

https://uclibc.org/docs/psABI-x86_64.pdf
https://uclibc.org/docs/psABI-x86_64.pdf

Chapter 5: Forth Words 371

di) dx mov \ get old tos

dx ax) add \ add to new tos

ret

end-code

\ Do nothing

ABI-CODE aNOP (--)

DI) AX LEA \ SP out := SP in

RET

END-CODE

\ Drop TOS

ABI-CODE aDROP (n --)

8 DI D) AX LEA \ SPout := SPin - 1

RET

END-CODE

\ Push 5 on the data stack

ABI-CODE aFIVE (-- 5)

-8 DI D) AX LEA \ SPout := SPin + 1

5 # AX) MOV \ TOS := 5

RET

END-CODE

\ Push 10 and 20 into data stack

ABI-CODE aTOS2 (-- n n)

-16 DI D) AX LEA \ SPout := SPin + 2

10 # 8 AX D) MOV \ TOS - 1 := 10

20 # AX) MOV \ TOS := 20

RET

END-CODE

\ Get Time Stamp Counter as two 32 bit integers

\ The TSC is incremented every CPU clock pulse

ABI-CODE aRDTSC (-- TSCl TSCh)

RDTSC \ DX:AX := TSC

Chapter 5: Forth Words 372

$FFFFFFFF # AX AND \ Clear upper 32 bit AX

0xFFFFFFFF # DX AND \ Clear upper 32 bit DX

AX R8 MOV \ Tempory save AX

-16 DI D) AX LEA \ SPout := SPin + 2

R8 8 AX D) MOV \ TOS-1 := saved AX = TSC low

DX AX) MOV \ TOS := Dx = TSC high

RET

END-CODE

\ Get Time Stamp Counter as 64 bit integer

ABI-CODE RDTSC (-- TSC)

RDTSC \ DX:AX := TSC

$FFFFFFFF # AX AND \ Clear upper 32 bit AX

32 # DX SHL \ Move lower 32 bit DX to upper 32 bit

AX DX OR \ Combine AX wit DX in DX

-8 DI D) AX LEA \ SPout := SPin + 1

DX AX) MOV \ TOS := DX

RET

END-CODE

VARIABLE V

\ Assign 4 to variable V

ABI-CODE V=4 (--)

BX PUSH \ Save BX, used by gforth

V # BX MOV \ BX := address of V

4 # BX) MOV \ Write 4 to V

BX POP \ Restore BX

DI) AX LEA \ SPout := SPin

RET

END-CODE

VARIABLE V

\ Assign 5 to variable V

Chapter 5: Forth Words 373

ABI-CODE V=5 (--)

V # CX MOV \ CX := address of V

5 # CX) MOV \ Write 5 to V

DI) AX LEA \ SPout := SPin

RET

END-CODE

ABI-CODE TEST2 (-- n n)

-16 DI D) AX LEA \ SPout := SPin + 2

5 # CX MOV \ CX := 5

5 # CX CMP

0= IF

1 # 8 AX D) MOV \ If CX = 5 then TOS - 1 := 1 <--

ELSE

2 # 8 AX D) MOV \ else TOS - 1 := 2

THEN

6 # CX CMP

0= IF

3 # AX) MOV \ If CX = 6 then TOS := 3

ELSE

4 # AX) MOV \ else TOS := 4 <--

THEN

RET

END-CODE

\ Do four loops. Expect : (4 3 2 1 --)

ABI-CODE LOOP4 (-- n n n n)

DI AX MOV \ SPout := SPin

4 # DX MOV \ DX := 4 loop counter

BEGIN

8 # AX SUB \ SP := SP + 1

DX AX) MOV \ TOS := DX

1 # DX SUB \ DX := DX - 1

0= UNTIL

Chapter 5: Forth Words 374

RET

END-CODE

Here’s a AMD64 example that deals with FP values:

abi-code my-f+ (r1 r2 -- r)

\ SP passed in di, returned in ax, address of FP passed in si

si) dx mov \ load fp

8 dx d) xmm0 movsd \ r2

dx) xmm0 addsd \ r1+r2

xmm0 8 dx d) movsd \ store r

8 # si) add \ update fp

di ax mov \ sp into return reg

ret

end-code

5.27.6 Alpha Assembler

The Alpha assembler and disassembler were originally
written by Bernd Thallner.

The register names a0–a5 are not available to avoid
shadowing hex numbers.

Immediate forms of arithmetic instructions are distin-
guished by a # just before the ,, e.g., and#, (note: lda,

does not count as arithmetic instruction).

You have to specify all operands to an instruction, even
those that other assemblers consider optional, e.g., the des-
tination register for br,, or the destination register and
hint for jmp,.

You can specify conditions for if, by removing the first
b and the trailing , from a branch with a corresponding
name; e.g.,

11 fgt if, \ if F11>0e

...

Chapter 5: Forth Words 375

endif,

fbgt, gives fgt.

5.27.7 MIPS assembler

The MIPS assembler was originally written by Christian
Pirker.

Currently the assembler and disassembler covers most
of the MIPS32 architecture and doesn’t support FP in-
structions.

The register names $a0–$a3 are not available to avoid
shadowing hex numbers. Use register numbers $4–$7 in-
stead.

Nothing distinguishes registers from immediate values.
Use explicit opcode names with the i suffix for instructions
with immediate argument. E.g. addiu, in place of addu,.

Where the architecture manual specifies several for-
mats for the instruction (e.g., for jalr,),use the one with
more arguments (i.e. two for jalr,). When in doubt, see
arch/mips/testasm.fs for an example of correct use.

Branches and jumps in the MIPS architecture have a
delay slot. You have to fill it manually (the simplest way is
to use nop,), the assembler does not do it for you (unlike
as). Even if,, ahead,, until,, again,, while,, else,
and repeat, need a delay slot. Since begin, and then,

just specify branch targets, they are not affected. For
branches the argument specifying the target is a relative
address. Add the address of the delay slot to get the ab-
solute address.

Note that you must not put branches nor jumps (nor
control-flow instructions) into the delay slot. Also it is a
bad idea to put pseudo-ops such as li, into a delay slot,

Chapter 5: Forth Words 376

as these may expand to several instructions. The MIPS I
architecture also had load delay slots, and newer MIPSes
still have restrictions on using mfhi, and mflo,. Be careful
to satisfy these restrictions, the assembler does not do it
for you.

Some example of instructions are:

$ra 12 $sp sw, \ sw ra,12(sp)

$4 8 $s0 lw, \ lw a0,8(s0)

$v0 $0 lui, \ lui v0,0x0

$s0 $s4 $12 addiu, \ addiu s0,s4,0x12

$s0 $s4 $4 addu, \ addu s0,s4,$a0

$ra $t9 jalr, \ jalr t9

You can specify the conditions for if, etc. by taking
a conditional branch and leaving away the b at the start
and the , at the end. E.g.,

4 5 eq if,

... \ do something if $4 equals $5

then,

The calling conventions for 32-bit MIPS machines is to
pass the first 4 arguments in registers $4..$7, and to use
$v0-$v1 for return values. In addition to these registers,
it is ok to clobber registers $t0-$t8 without saving and
restoring them.

If you use jalr, to call into dynamic library routines,
you must first load the called function’s address into $t9,
which is used by position-indirect code to do relative mem-
ory accesses.

Here is an example of a MIPS32 abi-code word:

abi-code my+ (n1 n2 -- n3)

\ SP passed in $4, returned in $v0

$t0 4 $4 lw, \ load n1, n2 from stack

Chapter 5: Forth Words 377

$t1 0 $4 lw,

$t0 $t0 $t1 addu, \ add n1+n2, result in $t0

$t0 4 $4 sw, \ store result (overwriting n1)

$ra jr, \ return to caller

$v0 $4 4 addiu, \ (delay slot) return uptated SP in $v0

end-code

5.27.8 PowerPC assembler

The PowerPC assembler and disassembler were con-
tributed by Michal Revucky.

This assembler does not follow the convention of end-
ing mnemonic names with a “,”, so some mnemonic names
shadow regular Forth words (in particular: and or xor

fabs); so if you want to use the Forth words, you have
to make them visible first, e.g., with also forth.

Registers are referred to by their number, e.g., 9 means
the integer register 9 or the FP register 9 (depending on
the instruction).

Because there is no way to distinguish registers from
immediate values, you have to explicitly use the immediate
forms of instructions, i.e., addi,, not just add,.

The assembler and disassembler usually support the
most general form of an instruction, but usually not the
shorter forms (especially for branches).

5.27.9 ARM Assembler

The ARM assembler includes all instruction of ARM ar-
chitecture version 4, and the BLX instruction from ar-
chitecture 5. It does not (yet) have support for Thumb
instructions. It also lacks support for any co-processors.

Chapter 5: Forth Words 378

The assembler uses a postfix syntax with the same
operand order as used in the ARM Architecture Reference
Manual. Mnemonics are suffixed by a comma.

Registers are specified by their names r0 through r15,
with the aliases pc, lr, sp, ip and fp provided for con-
venience. Note that ip refers to the“intra procedure call
scratch register” (r12) and does not refer to an instruction
pointer. sp refers to the ARM ABI stack pointer (r13) and
not the Forth stack pointer.

Condition codes can be specified anywhere in the in-
struction, but will be most readable if specified just in
front of the mnemonic. The ’S’ flag is not a separate
word, but encoded into instruction mnemonics, ie. just
use adds, instead of add, if you want the status register
to be updated.

The following table lists the syntax of operands for gen-
eral instructions:

Gforth normal assembler description

123 # #123 immediate

r12 r12 register

r12 4 #LSL r12, LSL #4 shift left by immediate

r12 r1 LSL r12, LSL r1 shift left by register

r12 4 #LSR r12, LSR #4 shift right by immediate

r12 r1 LSR r12, LSR r1 shift right by register

r12 4 #ASR r12, ASR #4 arithmetic shift right

r12 r1 ASR r12, ASR r1 ... by register

r12 4 #ROR r12, ROR #4 rotate right by immediate

r12 r1 ROR r12, ROR r1 ... by register

r12 RRX r12, RRX rotate right with extend by 1

Memory operand syntax is listed in this table:

Gforth normal assembler description

Chapter 5: Forth Words 379

r4] [r4] register

r4 4 #] [r4, #+4] register with immediate offset

r4 -4 #] [r4, #-4] with negative offset

r4 r1 +] [r4, +r1] register with register offset

r4 r1 -] [r4, -r1] with negated register offset

r4 r1 2 #LSL -] [r4, -r1, LSL #2] with negated and shifted offset

r4 4 #]! [r4, #+4]! immediate preincrement

r4 r1 +]! [r4, +r1]! register preincrement

r4 r1 -]! [r4, +r1]! register predecrement

r4 r1 2 #LSL +]! [r4, +r1, LSL #2]! shifted preincrement

r4 -4]# [r4], #-4 immediate postdecrement

r4 r1]+ [r4], r1 register postincrement

r4 r1]- [r4], -r1 register postdecrement

r4 r1 2 #LSL]- [r4], -r1, LSL #2 shifted postdecrement

’ xyz >body [#] xyz PC-relative addressing

Register lists for load/store multiple instructions are
started and terminated by using the words { and } respec-
tively. Between braces, register names can be listed one by
one or register ranges can be formed by using the postfix
operator r-r. The ^ flag is not encoded in the register list
operand, but instead directly encoded into the instruction
mnemonic, ie. use ^ldm, and ^stm,.

Addressing modes for load/store multiple are not en-
coded as instruction suffixes, but instead specified like an
addressing mode, Use one of DA, IA, DB, IB, DA!, IA!, DB!
or IB!.

The following table gives some examples:

Gforth normal assembler

r4 ia { r0 r7 r8 } stm, stmia r4, {r0,r7,r8}

r4 db! { r0 r7 r8 } ldm, ldmdb r4!, {r0,r7,r8}

sp ia! { r0 r15 r-r } ^ldm, ldmfd sp!, {r0-r15}^

Chapter 5: Forth Words 380

Control structure words typical for Forth assemblers
are available: if, ahead, then, else, begin, until,

again, while, repeat, repeat-until,. Conditions are
specified in front of these words:

r1 r2 cmp, \ compare r1 and r2

eq if, \ equal?

... \ code executed if r1 == r2

then,

Example of a definition using the ARM assembler:

abi-code my+ (n1 n2 -- n3)

\ arm abi: r0=SP, r1=&FP, r2,r3,r12 saved by caller

r0 IA! { r2 r3 } ldm, \ pop r2 = n2, r3 = n1

r3 r2 r3 add, \ r3 = n1+n1

r3 r0 -4 #]! str, \ push r3

pc lr mov, \ return to caller, new SP in r0

end-code

5.27.10 Other assemblers

If you want to contribute another assembler/disassembler,
please contact us (anton@mips.complang.tuwien.ac.at)
to check if we have such an assembler already. If you are
writing them from scratch, please use a similar syntax style
as the one we use (i.e., postfix, commas at the end of the in-
struction names, see Section 5.27.2 [Common Assembler],
page 364); make the output of the disassembler be valid
input for the assembler, and keep the style similar to the
style we used.

Hints on implementation: The most important part is
to have a good test suite that contains all instructions.
Once you have that, the rest is easy. For actual coding
you can take a look at arch/mips/disasm.fs to get some

mailto:anton@mips.complang.tuwien.ac.at

Chapter 5: Forth Words 381

ideas on how to use data for both the assembler and dis-
assembler, avoiding redundancy and some potential bugs.
You can also look at that file (and see Section 5.9.9.3 [Ad-
vanced does> usage example], page 169) to get ideas how
to factor a disassembler.

Start with the disassembler, because it’s easier to reuse
data from the disassembler for the assembler than the
other way round.

For the assembler, take a look at arch/alpha/asm.fs,
which shows how simple it can be.

5.28 Threading Words

These words provide access to code addresses and other
threading stuff in Gforth (and, possibly, other interpretive
Forths). It more or less abstracts away the differences be-
tween direct and indirect threading (and, for direct thread-
ing, the machine dependences). However, at present this
wordset is still incomplete. It is also pretty low-level; some
day it will hopefully be made unnecessary by an internals
wordset that abstracts implementation details away com-
pletely.

The terminology used here stems from indirect
threaded Forth systems; in such a system, the XT of a
word is represented by the CFA (code field address) of
a word; the CFA points to a cell that contains the code
address. The code address is the address of some machine
code that performs the run-time action of invoking the
word (e.g., the dovar: routine pushes the address of the
body of the word (a variable) on the stack).

In an indirect threaded Forth, you can get the code
address of name with ’ name @; in Gforth you can get it

Chapter 5: Forth Words 382

with ’ name >code-address, independent of the threading
method.

threading-method (– n) gforth “threading-method”

0 if the engine is direct threaded. Note that this may
change during the lifetime of an image.

>code-address () unknown “>code-address”

code-address! (c addr xt –) gforth “code-address!”

Create a code field with code address c-addr at xt.

For a word defined with DOES>, the code address usually
points to a jump instruction (the does-handler) that jumps
to the dodoes routine (in Gforth on some platforms, it
can also point to the dodoes routine itself). What you
are typically interested in, though, is whether a word is
a DOES>-defined word, and what Forth code it executes;
>does-code tells you that.

>does-code (xt – a addr) gforth “>does-code”

If xt is the execution token of a child of a DOES> word,
a-addr is the start of the Forth code after the DOES>; Oth-
erwise a-addr is 0.

To create a DOES>-defined word with the following
basic words, you have to set up a DOES>-handler with
does-handler!; /does-handler aus behind you have to
place your executable Forth code. Finally you have to cre-
ate a word and modify its behaviour with does-handler!.

does-code! (xt1 xt2 –) gforth “does-code!”

Create a code field at xt2 for a child of a DOES>-word;
xt1 is the execution token of the assigned Forth code.

doc-does-handler!

/does-handler (– n) gforth “/does-handler”

Chapter 5: Forth Words 383

The size of a DOES>-handler (includes possible
padding).

The code addresses produced by various defining words
are produced by the following words:

docol: (– addr) gforth “docol:”

The code address of a colon definition.

docon: (– addr) gforth “docon:”

The code address of a CONSTANT.

dovar: (– addr) gforth “dovar:”

The code address of a CREATEd word.

douser: (– addr) gforth “douser:”

The code address of a USER variable.

dodefer: (– addr) gforth “dodefer:”

The code address of a defered word.

dofield: (– addr) gforth “dofield:”

The code address of a field.

The following two words generalize >code-address,
>does-code, code-address!, and does-code!:

>definer (xt – definer) gforth “>definer”

Definer is a unique identifier for the way the xt was
defined. Words defined with different does>-codes have
different definers. The definer can be used for comparison
and in definer!.

definer! (definer xt –) gforth “definer!”

The word represented by xt changes its behaviour to
the behaviour associated with definer.

Chapter 5: Forth Words 384

5.29 Passing Commands to the
Operating System

Gforth allows you to pass an arbitrary string to the host
operating system shell (if such a thing exists) for execution.

sh ("..." –) gforth “sh”

Execute the rest of the command line as shell com-
mand(s). Afterwards, $? produces the exit status of the
command.

system (c-addr u –) gforth “system”

Pass the string specified by c-addr u to the host oper-
ating system for execution in a sub-shell. Afterwards, $?
produces the exit status of the command. The value of the
environment variable GFORTHSYSTEMPREFIX (or its default
value) is prepended to the string (mainly to support us-
ing command.com as shell in Windows instead of whatever
shell Cygwin uses by default; see Section 2.5 [Environment
variables], page 13).

$? (– n) gforth “dollar-question”

Value – the exit status returned by the most recently
executed system command.

getenv (c-addr1 u1 – c-addr2 u2) gforth “getenv”

The string c-addr1 u1 specifies an environment vari-
able. The string c-addr2 u2 is the host operating system’s
expansion of that environment variable. If the environ-
ment variable does not exist, c-addr2 u2 specifies a string
0 characters in length.

5.30 Keeping track of Time

ms (n –) unknown “ms”

Chapter 5: Forth Words 385

time&date (– nsec nmin nhour nday nmonth nyear) facility-
ext “time-and-date”

Report the current time of day. Seconds, minutes and
hours are numbered from 0. Months are numbered from
1.

doc->time&date

utime (– dtime) gforth “utime”

Report the current time in microseconds since some
epoch. Use #1000000 um/mod nip to convert to seconds

ntime (– dtime) gforth “ntime”

Report the current time in nanoseconds since some
epoch.

cputime (– duser dsystem) gforth “cputime”

duser and dsystem are the respective user- and system-
level CPU times used since the start of the Forth system
(excluding child processes), in microseconds (the granu-
larity may be much larger, however). On platforms with-
out the getrusage call, it reports elapsed time (since some
epoch) for duser and 0 for dsystem.

5.31 Miscellaneous Words

This section lists the Standard Forth words that are not
documented elsewhere in this manual. Ultimately, they all
need proper homes.

quit (?? – ??) core “quit”

Empty the return stack, make the user input device
the input source, enter interpret state and start the text
interpreter.

Chapter 5: Forth Words 386

The following Standard Forth words are not currently
supported by Gforth (see Chapter 8 [Standard confor-
mance], page 392):

EDITOR EMIT? FORGET

387

6 Error messages

A typical Gforth error message looks like this:

in file included from \evaluated string/:-1

in file included from ./yyy.fs:1

./xxx.fs:4: Invalid memory address

>>>bar<<<

Backtrace:

$400E664C @

$400E6664 foo

The message identifying the error is Invalid memory

address. The error happened when text-interpreting line
4 of the file ./xxx.fs. This line is given (it contains bar),
and the word on the line where the error happened, is
pointed out (with >>> and <<<).

The file containing the error was included in line 1 of
./yyy.fs, and yyy.fs was included from a non-file (in
this case, by giving yyy.fs as command-line parameter to
Gforth).

At the end of the error message you find a return stack
dump that can be interpreted as a backtrace (possibly
empty). On top you find the top of the return stack when
the throw happened, and at the bottom you find the re-
turn stack entry just above the return stack of the topmost
text interpreter.

To the right of most return stack entries you see a guess
for the word that pushed that return stack entry as its
return address. This gives a backtrace. In our case we
see that bar called foo, and foo called @ (and @ had an
Invalid memory address exception).

Chapter 6: Error messages 388

Note that the backtrace is not perfect: We don’t know
which return stack entries are return addresses (so we may
get false positives); and in some cases (e.g., for abort") we
cannot determine from the return address the word that
pushed the return address, so for some return addresses
you see no names in the return stack dump.

The return stack dump represents the return stack at
the time when a specific throw was executed. In programs
that make use of catch, it is not necessarily clear which
throw should be used for the return stack dump (e.g., con-
sider one throw that indicates an error, which is caught,
and during recovery another error happens; which throw

should be used for the stack dump?). Gforth presents the
return stack dump for the first throw after the last exe-
cuted (not returned-to) catch or nothrow; this works well
in the usual case. To get the right backtrace, you usually
want to insert nothrow or [’] false catch 2drop after a
catch if the error is not rethrown.

Gforth is able to do a return stack dump for throws
generated from primitives (e.g., invalid memory address,
stack empty etc.); gforth-fast is only able to do a re-
turn stack dump from a directly called throw (including
abort etc.). Given an exception caused by a primitive in
gforth-fast, you will typically see no return stack dump
at all; however, if the exception is caught by catch (e.g.,
for restoring some state), and then thrown again, the re-
turn stack dump will be for the first such throw.

389

7 Tools

See also Chapter 12 [Emacs and Gforth], page 425.

7.1 ans-report.fs: Report the words
used, sorted by wordset

If you want to label a Forth program as Standard Program,
you must document which wordsets the program uses.

The ans-report.fs tool makes it easy for you to de-
termine which words from which wordset and which non-
standard words your application uses. You simply have to
include ans-report.fs before loading the program you
want to check. After loading your program, you can get
the report with print-ans-report. A typical use is to
run this as batch job like this:

gforth ans-report.fs myprog.fs -e "print-ans-report bye"

The output looks like this (for compat/control.fs):

The program uses the following words

from CORE :

: POSTPONE THEN ; immediate ?dup IF 0=

from BLOCK-EXT :

\

from FILE :

(

ans-report.fs reports both Forth-94 and Forth-2012
wordsets. For words that are in both standards, it reports
the wordset without suffix (e.g., CORE-EXT). For Forth-
2012-only words, it reports the wordset with a -2012 suffix
(e.g., CORE-EXT-2012); and likewise for the words that are
Forth-94-only (i.e., that have been removed in Forth-2012).

Chapter 7: Tools 390

7.1.1 Caveats

Note that ans-report.fs just checks which words are
used, not whether they are used in a standard-conforming
way!

Some words are defined in several wordsets in the stan-
dard. ans-report.fs reports them for only one of the
wordsets, and not necessarily the one you expect. It de-
pends on usage which wordset is the right one to specify.
E.g., if you only use the compilation semantics of S", it is
a Core word; if you also use its interpretation semantics,
it is a File word.

7.2 Stack depth changes during
interpretation

Sometimes you notice that, after loading a file, there are
items left on the stack. The tool depth-changes.fs helps
you find out quickly where in the file these stack items are
coming from.

The simplest way of using depth-changes.fs is to in-
clude it before the file(s) you want to check, e.g.:

gforth depth-changes.fs my-file.fs

This will compare the stack depths of the data and
FP stack at every empty line (in interpretation state)
against these depths at the last empty line (in interpre-
tation state). If the depths are not equal, the position in
the file and the stack contents are printed with ~~ (see
Section 5.24.8 [Debugging], page 334). This indicates that
a stack depth change has occured in the paragraph of non-
empty lines before the indicated line. It is a good idea to
leave an empty line at the end of the file, so the last para-
graph is checked, too.

Chapter 7: Tools 391

Checking only at empty lines usually works well, but
sometimes you have big blocks of non-empty lines (e.g.,
when building a big table), and you want to know where
in this block the stack depth changed. You can check all
interpreted lines with

gforth depth-changes.fs -e "’ all-lines is depth-changes-filter" my-file.fs

This checks the stack depth at every end-of-line. So the
depth change occured in the line reported by the ~~ (not
in the line before).

Note that, while this offers better accuracy in indicating
where the stack depth changes, it will often report many
intentional stack depth changes (e.g., when an interpreted
computation stretches across several lines). You can sup-
press the checking of some lines by putting backslashes at
the end of these lines (not followed by white space), and
using

gforth depth-changes.fs -e "’ most-lines is depth-changes-filter" my-file.fs

392

8 Standard conformance

To the best of our knowledge, Gforth is a

ANS Forth System and a Forth-2012 System

• providing the Core Extensions word set

• providing the Block word set

• providing the Block Extensions word set

• providing the Double-Number word set

• providing the Double-Number Extensions word set

• providing the Exception word set

• providing the Exception Extensions word set

• providing the Facility word set

• providing the Facility Extensions word set, except
EMIT?

• providing the File Access word set

• providing the File Access Extensions word set

• providing the Floating-Point word set

• providing the Floating-Point Extensions word set

• providing the Locals word set

• providing the Locals Extensions word set

• providing the Memory-Allocation word set

• providing the Memory-Allocation Extensions word set

• providing the Programming-Tools word set

• providing the Programming-Tools Extensions word set,
except EDITOR and FORGET

• providing the Search-Order word set

• providing the Search-Order Extensions word set

Chapter 8: Standard conformance 393

• providing the String word set

• providing the String Extensions word set

• providing the Extended-Character wordset

Gforth has the following environmental restrictions:

• While processing the OS command line, if an exception
is not caught, Gforth exits with a non-zero exit code
instead of performing QUIT.

• When an throw is performed after a query, Gforth does
not always restore the input source specification in ef-
fect at the corresponding catch.

In addition, Standard Forth systems are required to
document certain implementation choices. This chapter
tries to meet these requirements for the Forth-94 standard.
For the Forth-2012 standard, we decided to produce the
additional documentation only if there is demand. So if
you are really missing this documentation, please let us
know.

In many cases, the following documentation gives a way
to ask the system for the information instead of providing
the information directly, in particular, if the information
depends on the processor, the operating system or the in-
stallation options chosen, or if they are likely to change
during the maintenance of Gforth.

8.1 The Core Words

8.1.1 Implementation Defined Options

(Cell) aligned addresses:
processor-dependent. Gforth’s alignment words perform
natural alignment (e.g., an address aligned for a datum

Chapter 8: Standard conformance 394

of size 8 is divisible by 8). Unaligned accesses usually
result in a -23 THROW.

EMIT and non-graphic characters:
The character is output using the C library function (ac-
tually, macro) putc.

character editing of ACCEPT and EXPECT:
This is modeled on the GNU readline library (see Section
“Command Line Editing” in The GNU Readline Li-
brary) with Emacs-like key bindings. Tab deviates a lit-
tle by producing a full word completion every time you
type it (instead of producing the common prefix of all
completions). See Section 2.4 [Command-line editing],
page 11.

character set:
The character set of your computer and display device.
Gforth is 8-bit-clean (but some other component in your
system may make trouble).

Character-aligned address requirements:
installation-dependent. Currently a character is repre-
sented by a C unsigned char; in the future we might
switch to wchar_t (Comments on that requested).

character-set extensions and matching of names:
Any character except the ASCII NUL character can be
used in a name. Matching is case-insensitive (except in
TABLEs). The matching is performed using the C library
function strncasecmp, whose function is probably influ-
enced by the locale. E.g., the C locale does not know
about accents and umlauts, so they are matched case-
sensitively in that locale. For portability reasons it is
best to write programs such that they work in the C lo-

Chapter 8: Standard conformance 395

cale. Then one can use libraries written by a Polish pro-
grammer (who might use words containing ISO Latin-2
encoded characters) and by a French programmer (ISO
Latin-1) in the same program (of course, WORDS will pro-
duce funny results for some of the words (which ones,
depends on the font you are using)). Also, the locale you
prefer may not be available in other operating systems.
Hopefully, Unicode will solve these problems one day.

conditions under which control characters match a space
delimiter:
If word is called with the space character as a delimiter,
all white-space characters (as identified by the C macro
isspace()) are delimiters. Parse, on the other hand,
treats space like other delimiters. Parse-name, which is
used by the outer interpreter (aka text interpreter) by
default, treats all white-space characters as delimiters.

format of the control-flow stack:
The data stack is used as control-flow stack. The size
of a control-flow stack item in cells is given by the con-
stant cs-item-size. At the time of this writing, an
item consists of a (pointer to a) locals list (third), an
address in the code (second), and a tag for identifying
the item (TOS). The following tags are used: defstart,
live-orig, dead-orig, dest, do-dest, scopestart.

conversion of digits > 35
The characters [\]^_’ are the digits with the decimal
value 36−41. There is no way to input many of the larger
digits.

Chapter 8: Standard conformance 396

display after input terminates in ACCEPT and EXPECT:
The cursor is moved to the end of the entered string. If
the input is terminated using the Return key, a space is
typed.

exception abort sequence of ABORT":
The error string is stored into the variable "error and a
-2 throw is performed.

input line terminator:
For interactive input, C-m (CR) and C-j (LF) terminate
lines. One of these characters is typically produced when
you type the Enter or Return key.

maximum size of a counted string:
s" /counted-string" environment? drop .. Cur-
rently 255 characters on all platforms, but this may
change.

maximum size of a parsed string:
Given by the constant /line. Currently 255 characters.

maximum size of a definition name, in characters:
MAXU/8

maximum string length for ENVIRONMENT?, in characters:
MAXU/8

method of selecting the user input device:
The user input device is the standard input. There is cur-
rently no way to change it from within Gforth. However,
the input can typically be redirected in the command line
that starts Gforth.

method of selecting the user output device:
EMIT and TYPE output to the file-id stored in the value
outfile-id (stdout by default). Gforth uses unbuffered

Chapter 8: Standard conformance 397

output when the user output device is a terminal, other-
wise the output is buffered.

methods of dictionary compilation:
What are we expected to document here?

number of bits in one address unit:
s" address-units-bits" environment? drop .. 8 in
all current platforms.

number representation and arithmetic:
Processor-dependent. Binary two’s complement on all
current platforms.

ranges for integer types:
Installation-dependent. Make environmental queries for
MAX-N, MAX-U, MAX-D and MAX-UD. The lower bounds for
unsigned (and positive) types is 0. The lower bound for
signed types on two’s complement and one’s complement
machines machines can be computed by adding 1 to the
upper bound.

read-only data space regions:
The whole Forth data space is writable.

size of buffer at WORD:
PAD HERE - .. 104 characters on 32-bit machines. The
buffer is shared with the pictured numeric output string.
If overwriting PAD is acceptable, it is as large as the re-
maining dictionary space, although only as much can be
sensibly used as fits in a counted string.

size of one cell in address units:
1 cells ..

size of one character in address units:
1 chars .. 1 on all current platforms.

Chapter 8: Standard conformance 398

size of the keyboard terminal buffer:
Varies. You can determine the size at a specific time
using lp@ tib - .. It is shared with the locals stack and
TIBs of files that include the current file. You can change
the amount of space for TIBs and locals stack at Gforth
startup with the command line option -l.

size of the pictured numeric output buffer:
PAD HERE - .. 104 characters on 32-bit machines. The
buffer is shared with WORD.

size of the scratch area returned by PAD:
The remainder of dictionary space. unused pad here -

- ..

system case-sensitivity characteristics:
Dictionary searches are case-insensitive (except in
TABLEs). However, as explained above under character-
set extensions, the matching for non-ASCII characters
is determined by the locale you are using. In the
default C locale all non-ASCII characters are matched
case-sensitively.

system prompt:
ok in interpret state, compiled in compile state.

division rounding:
The ordinary division words / mod /mod */ */mod

perform floored division (with the default installation
of Gforth). You can check this with s" floored"

environment? drop .. If you write programs that need
a specific division rounding, best use fm/mod or sm/rem
for portability.

values of STATE when true:
-1.

Chapter 8: Standard conformance 399

values returned after arithmetic overflow:
On two’s complement machines, arithmetic is performed
modulo 2**bits-per-cell for single arithmetic and 4**bits-
per-cell for double arithmetic (with appropriate mapping
for signed types). Division by zero typically results in
a -55 throw (Floating-point unidentified fault) or -10

throw (divide by zero). Integer division overflow can
result in these throws, or in -11 throw; in gforth-fast

division overflow and divide by zero may also result in
returning bogus results without producing an exception.

whether the current definition can be found after DOES>:
No.

8.1.2 Ambiguous conditions

a name is neither a word nor a number:
-13 throw (Undefined word).

a definition name exceeds the maximum length allowed:
-19 throw (Word name too long)

addressing a region not inside the various data spaces of
the forth system:
The stacks, code space and header space are accessi-
ble. Machine code space is typically readable. Accessing
other addresses gives results dependent on the operating
system. On decent systems: -9 throw (Invalid memory
address).

argument type incompatible with parameter:
This is usually not caught. Some words perform checks,
e.g., the control flow words, and issue a ABORT" or -12

THROW (Argument type mismatch).

Chapter 8: Standard conformance 400

attempting to obtain the execution token of a word with
undefined execution semantics:
The execution token represents the interpretation seman-
tics of the word. Gforth defines interpretation semantics
for all words; for words where the standard does not de-
fine interpretation semantics, but defines the execution
semantics (except LEAVE), the interpretation semantics
are to perform the execution semantics. For words where
the standard defines no interprtation semantics, but de-
fined compilation semantics (plus LEAVE), the interpreta-
tion semantics are to perform the compilation semantics.
Some words are marked as compile-only, and ’ gives a
warning for these words.

dividing by zero:
On some platforms, this produces a -10 throw (Division
by zero); on other systems, this typically results in a -55

throw (Floating-point unidentified fault).

insufficient data stack or return stack space:
Depending on the operating system, the installation, and
the invocation of Gforth, this is either checked by the
memory management hardware, or it is not checked. If it
is checked, you typically get a -3 throw (Stack overflow),
-5 throw (Return stack overflow), or -9 throw (Invalid
memory address) (depending on the platform and how
you achieved the overflow) as soon as the overflow hap-
pens. If it is not checked, overflows typically result in
mysterious illegal memory accesses, producing -9 throw

(Invalid memory address) or -23 throw (Address align-
ment exception); they might also destroy the internal
data structure of ALLOCATE and friends, resulting in var-
ious errors in these words.

Chapter 8: Standard conformance 401

insufficient space for loop control parameters:
Like other return stack overflows.

insufficient space in the dictionary:
If you try to allot (either directly with allot, or indi-
rectly with ,, create etc.) more memory than available
in the dictionary, you get a -8 throw (Dictionary over-
flow). If you try to access memory beyond the end of the
dictionary, the results are similar to stack overflows.

interpreting a word with undefined interpretation
semantics:
Gforth defines interpretation semantics for all words; for
words where the standard defines execution semantics
(except LEAVE), the interpretation semantics are to per-
form the execution semantics. For words where the stan-
dard defines no interprtation semantics, but defined com-
pilation semantics (plus LEAVE), the interpretation se-
mantics are to perform the compilation semantics. Some
words are marked as compile-only, and text-interpreting
them gives a warning.

modifying the contents of the input buffer or a string
literal:
These are located in writable memory and can be modi-
fied.

overflow of the pictured numeric output string:
-17 throw (Pictured numeric ouput string overflow).

parsed string overflow:
PARSE cannot overflow. WORD does not check for overflow.

producing a result out of range:
On two’s complement machines, arithmetic is performed
modulo 2**bits-per-cell for single arithmetic and 4**bits-

Chapter 8: Standard conformance 402

per-cell for double arithmetic (with appropriate map-
ping for signed types). Division by zero typically results
in a -10 throw (divide by zero) or -55 throw (floating
point unidentified fault). Overflow on division may re-
sult in these errors or in -11 throw (result out of range).
Gforth-fast may silently produce bogus results on divi-
sion overflow or division by zero. Convert and >number

currently overflow silently.

reading from an empty data or return stack:
The data stack is checked by the outer (aka text) inter-
preter after every word executed. If it has underflowed,
a -4 throw (Stack underflow) is performed. Apart from
that, stacks may be checked or not, depending on oper-
ating system, installation, and invocation. If they are
caught by a check, they typically result in -4 throw

(Stack underflow), -6 throw (Return stack underflow)
or -9 throw (Invalid memory address), depending on the
platform and which stack underflows and by how much.
Note that even if the system uses checking (through the
MMU), your program may have to underflow by a sig-
nificant number of stack items to trigger the reaction
(the reason for this is that the MMU, and therefore the
checking, works with a page-size granularity). If there
is no checking, the symptoms resulting from an under-
flow are similar to those from an overflow. Unbalanced
return stack errors can result in a variety of symptoms,
including -9 throw (Invalid memory address) and Illegal
Instruction (typically -260 throw).

unexpected end of the input buffer, resulting in an
attempt to use a zero-length string as a name:
Create and its descendants perform a -16 throw (At-
tempt to use zero-length string as a name). Words like

Chapter 8: Standard conformance 403

’ probably will not find what they search. Note that
it is possible to create zero-length names with nextname

(should it not?).

>IN greater than input buffer:
The next invocation of a parsing word returns a string
with length 0.

RECURSE appears after DOES>:
Compiles a recursive call to the code after DOES>.

argument input source different than current input source
for RESTORE-INPUT:
-12 THROW. Note that, once an input file is closed (e.g.,
because the end of the file was reached), its source-id may
be reused. Therefore, restoring an input source specifi-
cation referencing a closed file may lead to unpredictable
results instead of a -12 THROW.

In the future, Gforth may be able to restore input source
specifications from other than the current input source.

data space containing definitions gets de-allocated:
Deallocation with allot is not checked. This typically
results in memory access faults or execution of illegal
instructions.

data space read/write with incorrect alignment:
Processor-dependent. Typically results in a -23 throw

(Address alignment exception). Under Linux-Intel on
a 486 or later processor with alignment turned on, in-
correct alignment results in a -9 throw (Invalid mem-
ory address). There are reportedly some processors with
alignment restrictions that do not report violations.

data space pointer not properly aligned, ,, C,:
Like other alignment errors.

Chapter 8: Standard conformance 404

less than u+2 stack items (PICK and ROLL):
Like other stack underflows.

loop control parameters not available:
Not checked. The counted loop words simply assume
that the top of return stack items are loop control pa-
rameters and behave accordingly.

most recent definition does not have a name
(IMMEDIATE):
abort" last word was headerless".

name not defined by VALUE used by TO:
-32 throw (Invalid name argument) (unless name is a
local or was defined by CONSTANT; in the latter case it
just changes the constant).

name not found (’, POSTPONE, [’], [COMPILE]):
-13 throw (Undefined word)

parameters are not of the same type (DO, ?DO, WITHIN):
Gforth behaves as if they were of the same type. I.e., you
can predict the behaviour by interpreting all parameters
as, e.g., signed.

POSTPONE or [COMPILE] applied to TO:
Assume : X POSTPONE TO ; IMMEDIATE. X performs the
compilation semantics of TO.

String longer than a counted string returned by WORD:
Not checked. The string will be ok, but the count will,
of course, contain only the least significant bits of the
length.

u greater than or equal to the number of bits in a cell
(LSHIFT, RSHIFT):
Processor-dependent. Typical behaviours are returning
0 and using only the low bits of the shift count.

Chapter 8: Standard conformance 405

word not defined via CREATE:
>BODY produces the PFA of the word no matter how it
was defined.

DOES> changes the execution semantics of the last de-
fined word no matter how it was defined. E.g., CONSTANT
DOES> is equivalent to CREATE , DOES>.

words improperly used outside <# and #>:
Not checked. As usual, you can expect memory faults.

8.1.3 Other system documentation

nonstandard words using PAD:
None.

operator’s terminal facilities available:
After processing the OS’s command line, Gforth goes into
interactive mode, and you can give commands to Gforth
interactively. The actual facilities available depend on
how you invoke Gforth.

program data space available:
UNUSED . gives the remaining dictionary space. The total
dictionary space can be specified with the -m switch (see
Section 2.1 [Invoking Gforth], page 4) when Gforth starts
up.

return stack space available:
You can compute the total return stack space in cells with
s" RETURN-STACK-CELLS" environment? drop .. You
can specify it at startup time with the -r switch (see
Section 2.1 [Invoking Gforth], page 4).

stack space available:
You can compute the total data stack space in cells with
s" STACK-CELLS" environment? drop .. You can spec-

Chapter 8: Standard conformance 406

ify it at startup time with the -d switch (see Section 2.1
[Invoking Gforth], page 4).

system dictionary space required, in address units:
Type here forthstart - . after startup. At the time of
this writing, this gives 80080 (bytes) on a 32-bit system.

8.2 The optional Block word set

8.2.1 Implementation Defined Options

the format for display by LIST:
First the screen number is displayed, then 16 lines of 64
characters, each line preceded by the line number.

the length of a line affected by \:
64 characters.

8.2.2 Ambiguous conditions

correct block read was not possible:
Typically results in a throw of some OS-derived value
(between -512 and -2048). If the blocks file was just not
long enough, blanks are supplied for the missing portion.

I/O exception in block transfer:
Typically results in a throw of some OS-derived value
(between -512 and -2048).

invalid block number:
-35 throw (Invalid block number)

a program directly alters the contents of BLK:
The input stream is switched to that other block, at the
same position. If the storing to BLK happens when inter-
preting non-block input, the system will get quite con-
fused when the block ends.

Chapter 8: Standard conformance 407

no current block buffer for UPDATE:
UPDATE has no effect.

8.2.3 Other system documentation

any restrictions a multiprogramming system places on the
use of buffer addresses:
No restrictions (yet).

the number of blocks available for source and data:
depends on your disk space.

8.3 The optional Double Number
word set

8.3.1 Ambiguous conditions

d outside of range of n in D>S:
The least significant cell of d is produced.

8.4 The optional Exception word set

8.4.1 Implementation Defined Options

THROW-codes used in the system:
The codes -256−-511 are used for reporting signals. The
mapping from OS signal numbers to throw codes is -
256−signal. The codes -512−-2047 are used for OS er-
rors (for file and memory allocation operations). The
mapping from OS error numbers to throw codes is -
512−errno. One side effect of this mapping is that unde-
fined OS errors produce a message with a strange num-
ber; e.g., -1000 THROW results in Unknown error 488 on
my system.

Chapter 8: Standard conformance 408

8.5 The optional Facility word set

8.5.1 Implementation Defined Options

encoding of keyboard events (EKEY):
Keys corresponding to ASCII characters are encoded as
ASCII characters. Other keys are encoded with the con-
stants k-left, k-right, k-up, k-down, k-home, k-end,
k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k-winch,
k-eof.

duration of a system clock tick:
System dependent. With respect to MS, the time is speci-
fied in microseconds. How well the OS and the hardware
implement this, is another question.

repeatability to be expected from the execution of MS:
System dependent. On Unix, a lot depends on load. If
the system is lightly loaded, and the delay is short enough
that Gforth does not get swapped out, the performance
should be acceptable. Under MS-DOS and other single-
tasking systems, it should be good.

8.5.2 Ambiguous conditions

AT-XY can’t be performed on user output device:
Largely terminal dependent. No range checks are done
on the arguments. No errors are reported. You may
see some garbage appearing, you may see simply nothing
happen.

8.6 The optional File-Access word set

Chapter 8: Standard conformance 409

8.6.1 Implementation Defined Options

file access methods used:
R/O, R/W and BIN work as you would expect. W/O

translates into the C file opening mode w (or wb): The
file is cleared, if it exists, and created, if it does not
(with both open-file and create-file). Under Unix
create-file creates a file with 666 permissions modified
by your umask.

file exceptions:
The file words do not raise exceptions (except, perhaps,
memory access faults when you pass illegal addresses or
file-ids).

file line terminator:
System-dependent. Gforth uses C’s newline character as
line terminator. What the actual character code(s) of
this are is system-dependent.

file name format:
System dependent. Gforth just uses the file name format
of your OS.

information returned by FILE-STATUS:
FILE-STATUS returns the most powerful file access mode
allowed for the file: Either R/O, W/O or R/W. If the file
cannot be accessed, R/O BIN is returned. BIN is applica-
ble along with the returned mode.

input file state after an exception when including source:
All files that are left via the exception are closed.

ior values and meaning:
The iors returned by the file and memory allocation
words are intended as throw codes. They typically are in

Chapter 8: Standard conformance 410

the range -512−-2047 of OS errors. The mapping from
OS error numbers to iors is -512−errno.

maximum depth of file input nesting:
limited by the amount of return stack, locals/TIB stack,
and the number of open files available. This should not
give you troubles.

maximum size of input line:
/line. Currently 255.

methods of mapping block ranges to files:
By default, blocks are accessed in the file blocks.fb in
the current working directory. The file can be switched
with USE.

number of string buffers provided by S":
As many as memory available; the strings are stored in
memory blocks allocated with ALLOCATE indefinitely.

size of string buffer used by S":
/line. currently 255.

8.6.2 Ambiguous conditions

attempting to position a file outside its boundaries:
REPOSITION-FILE is performed as usual: After-
wards, FILE-POSITION returns the value given to
REPOSITION-FILE.

attempting to read from file positions not yet written:
End-of-file, i.e., zero characters are read and no error is
reported.

file-id is invalid (INCLUDE-FILE):
An appropriate exception may be thrown, but a memory
fault or other problem is more probable.

Chapter 8: Standard conformance 411

I/O exception reading or closing file-id (INCLUDE-FILE,
INCLUDED):
The ior produced by the operation, that discovered the
problem, is thrown.

named file cannot be opened (INCLUDED):
The ior produced by open-file is thrown.

requesting an unmapped block number:
There are no unmapped legal block numbers. On some
operating systems, writing a block with a large number
may overflow the file system and have an error message
as consequence.

using source-id when blk is non-zero:
source-id performs its function. Typically it will give
the id of the source which loaded the block. (Better
ideas?)

8.7 The optional Floating-Point word
set

8.7.1 Implementation Defined Options

format and range of floating point numbers:
System-dependent; the double type of C.

results of REPRESENT when float is out of range:
System dependent; REPRESENT is implemented using the
C library function ecvt() and inherits its behaviour in
this respect.

rounding or truncation of floating-point numbers:
System dependent; the rounding behaviour is inherited
from the hosting C compiler. IEEE-FP-based (i.e., most)
systems by default round to nearest, and break ties by

Chapter 8: Standard conformance 412

rounding to even (i.e., such that the last bit of the man-
tissa is 0).

size of floating-point stack:
s" FLOATING-STACK" environment? drop . gives the
total size of the floating-point stack (in floats). You can
specify this on startup with the command-line option -f

(see Section 2.1 [Invoking Gforth], page 4).

width of floating-point stack:
1 floats.

8.7.2 Ambiguous conditions

df@ or df! used with an address that is not double-float
aligned:
System-dependent. Typically results in a -23 THROW like
other alignment violations.

f@ or f! used with an address that is not float aligned:
System-dependent. Typically results in a -23 THROW like
other alignment violations.

floating-point result out of range:
System-dependent. Can result in a -43 throw (float-
ing point overflow), -54 throw (floating point under-
flow), -41 throw (floating point inexact result), -55

THROW (Floating-point unidentified fault), or can produce
a special value representing, e.g., Infinity.

sf@ or sf! used with an address that is not single-float
aligned:
System-dependent. Typically results in an alignment
fault like other alignment violations.

Chapter 8: Standard conformance 413

base is not decimal (REPRESENT, F., FE., FS.):
The floating-point number is converted into decimal
nonetheless.

Both arguments are equal to zero (FATAN2):
System-dependent. FATAN2 is implemented using the C
library function atan2().

Using FTAN on an argument r1 where cos(r1) is zero:
System-dependent. Anyway, typically the cos of r1 will
not be zero because of small errors and the tan will be a
very large (or very small) but finite number.

d cannot be presented precisely as a float in D>F:
The result is rounded to the nearest float.

dividing by zero:
Platform-dependent; can produce an Infinity, NaN,
-42 throw (floating point divide by zero) or -55 throw

(Floating-point unidentified fault).

exponent too big for conversion (DF!, DF@, SF!, SF@):
System dependent. On IEEE-FP based systems the num-
ber is converted into an infinity.

float<1 (FACOSH):
Platform-dependent; on IEEE-FP systems typically pro-
duces a NaN.

float<=-1 (FLNP1):
Platform-dependent; on IEEE-FP systems typically pro-
duces a NaN (or a negative infinity for float=-1).

float<=0 (FLN, FLOG):
Platform-dependent; on IEEE-FP systems typically pro-
duces a NaN (or a negative infinity for float=0).

Chapter 8: Standard conformance 414

float<0 (FASINH, FSQRT):
Platform-dependent; for fsqrt this typically gives a
NaN, for fasinh some platforms produce a NaN, oth-
ers a number (bug in the C library?).

|float|>1 (FACOS, FASIN, FATANH):
Platform-dependent; IEEE-FP systems typically pro-
duce a NaN.

integer part of float cannot be represented by d in F>D:
Platform-dependent; typically, some double number is
produced and no error is reported.

string larger than pictured numeric output area (f., fe.,
fs.):
Precision characters of the numeric output area are
used. If precision is too high, these words will smash
the data or code close to here.

8.8 The optional Locals word set

8.8.1 Implementation Defined Options

maximum number of locals in a definition:
s" #locals" environment? drop .. Currently 15. This
is a lower bound, e.g., on a 32-bit machine there can be
41 locals of up to 8 characters. The number of locals in
a definition is bounded by the size of locals-buffer, which
contains the names of the locals.

8.8.2 Ambiguous conditions

executing a named local in interpretation state:
Compiles the local into the current definition (just as in
compile state); in addition text-interpreting a local in
interpretation state gives an “is compile-only” warning.

Chapter 8: Standard conformance 415

name not defined by VALUE or (LOCAL) (TO):
-32 throw (Invalid name argument)

8.9 The optional Memory-Allocation
word set

8.9.1 Implementation Defined Options

values and meaning of ior:
The iors returned by the file and memory allocation
words are intended as throw codes. They typically are in
the range -512−-2047 of OS errors. The mapping from
OS error numbers to iors is -512−errno.

8.10 The optional Programming-Tools
word set

8.10.1 Implementation Defined Options

ending sequence for input following ;CODE and CODE:
END-CODE

manner of processing input following ;CODE and CODE:
The ASSEMBLER vocabulary is pushed on the search order
stack, and the input is processed by the text interpreter,
(starting) in interpret state.

search order capability for EDITOR and ASSEMBLER:
The Search-Order word set.

source and format of display by SEE:
The source for see is the executable code used by the
inner interpreter. The current see tries to output Forth
source code (and on some platforms, assembly code for
primitives) as well as possible.

Chapter 8: Standard conformance 416

8.10.2 Ambiguous conditions

deleting the compilation word list (FORGET):
Not implemented (yet).

fewer than u+1 items on the control-flow stack (CS-PICK,
CS-ROLL):
This typically results in an abort" with a descriptive
error message (may change into a -22 throw (Control
structure mismatch) in the future). You may also get a
memory access error. If you are unlucky, this ambiguous
condition is not caught.

name can’t be found (FORGET):
Not implemented (yet).

name not defined via CREATE:
;CODE behaves like DOES> in this respect, i.e., it changes
the execution semantics of the last defined word no mat-
ter how it was defined.

POSTPONE applied to [IF]:
After defining : X POSTPONE [IF] ; IMMEDIATE. X is
equivalent to [IF].

reaching the end of the input source before matching
[ELSE] or [THEN]:
Continue in the same state of conditional compilation
in the next outer input source. Currently there is no
warning to the user about this.

removing a needed definition (FORGET):
Not implemented (yet).

8.11 The optional Search-Order word
set

Chapter 8: Standard conformance 417

8.11.1 Implementation Defined Options

maximum number of word lists in search order:
s" wordlists" environment? drop .. Currently 16.

minimum search order:
root root.

8.11.2 Ambiguous conditions

changing the compilation word list (during compilation):
The word is entered into the word list that was the compi-
lation word list at the start of the definition. Any changes
to the name field (e.g., immediate) or the code field (e.g.,
when executing DOES>) are applied to the latest defined
word (as reported by latest or latestxt), if possible,
irrespective of the compilation word list.

search order empty (previous):
abort" Vocstack empty".

too many word lists in search order (also):
abort" Vocstack full".

418

9 Should I use Gforth
extensions?

As you read through the rest of this manual, you will see
documentation for Standard words, and documentation for
some appealing Gforth extensions. You might ask yourself
the question: “Should I restrict myself to the standard, or
should I use the extensions?”

The answer depends on the goals you have for the pro-
gram you are working on:

• Is it just for yourself or do you want to share it with
others?

• If you want to share it, do the others all use Gforth?

• If it is just for yourself, do you want to restrict yourself
to Gforth?

If restricting the program to Gforth is ok, then there is
no reason not to use extensions. It is still a good idea to
keep to the standard where it is easy, in case you want to
reuse these parts in another program that you want to be
portable.

If you want to be able to port the program to other
Forth systems, there are the following points to consider:

• Most Forth systems that are being maintained support
Standard Forth. So if your program complies with the
standard, it will be portable among many systems.

• A number of the Gforth extensions can be implemented
in Standard Forth using public-domain files provided in
the compat/ directory. These are mentioned in the text
in passing. There is no reason not to use these exten-
sions, your program will still be Standard Forth com-

Chapter 9: Should I use Gforth extensions? 419

pliant; just include the appropriate compat files with
your program.

• The tool ans-report.fs (see Section 7.1 [Standard Re-
port], page 389) makes it easy to analyse your program
and determine what non-Standard words it relies upon.
However, it does not check whether you use standard
words in a non-standard way.

• Some techniques are not standardized by Standard
Forth, and are hard or impossible to implement in a
standard way, but can be implemented in most Forth
systems easily, and usually in similar ways (e.g., access-
ing word headers). Forth has a rich historical precedent
for programmers taking advantage of implementation-
dependent features of their tools (for example, relying
on a knowledge of the dictionary structure). Sometimes
these techniques are necessary to extract every last bit
of performance from the hardware, sometimes they are
just a programming shorthand.

• Does using a Gforth extension save more work than
the porting this part to other Forth systems (if any)
will cost?

• Is the additional functionality worth the reduction in
portability and the additional porting problems?

In order to perform these considerations, you need to
know what’s standard and what’s not. This manual gen-
erally states if something is non-standard, but the au-
thoritative source is the standard document (http://www.
taygeta.com/forth/dpans.html). Appendix A of the
Standard (Rationale) provides a valuable insight into the
thought processes of the technical committee.

http://www.taygeta.com/forth/dpans.html
http://www.taygeta.com/forth/dpans.html

Chapter 9: Should I use Gforth extensions? 420

Note also that portability between Forth systems is not
the only portability issue; there is also the issue of porta-
bility between different platforms (processor/OS combina-
tions).

421

10 Model

This chapter has yet to be written. It will contain infor-
mation, on which internal structures you can rely.

422

11 Integrating Gforth into C
programs

Several people like to use Forth as scripting language for
applications that are otherwise written in C, C++, or some
other language.

The Forth system ATLAST provides facilities for em-
bedding it into applications; unfortunately it has several
disadvantages: most importantly, it is not based on Stan-
dard Forth, and it is apparently dead (i.e., not developed
further and not supported). The facilities provided by
Gforth in this area are inspired by ATLAST’s facilities, so
making the switch should not be hard.

We also tried to design the interface such that it can
easily be implemented by other Forth systems, so that we
may one day arrive at a standardized interface. Such a
standard interface would allow you to replace the Forth
system without having to rewrite C code.

You embed the Gforth interpreter by linking with the
library libgforth.a or libgforth.so (give the compiler
the option -lgforth, or for one of the other engines
-lgforth-fast, -lgforth-itc, or -lgforth-ditc). All
global symbols in this library that belong to the interface,
have the prefix gforth_; if a common interface emerges,
the functions may also be available through #defines with
the prefix forth_.

You can include the declarations of Forth types, the
functions and variables of the interface with #include

<gforth.h>.

You can now run a Gforth session by either calling
gforth_main or using the components:

Chapter 11: Integrating Gforth into C programs 423

Cell gforth_main(int argc, char **argv, char **env)

{

Cell retvalue=gforth_start(argc, argv);

if(retvalue == -56) { /* throw-code for quit */

gforth_setwinch(); // set winch signal handler

gforth_bootmessage(); // show boot message

retvalue = gforth_quit(); // run quit loop

}

gforth_cleanup();

gforth_printmetrics();

// gforth_free_dict(); // if you want to restart, do this

return retvalue;

}

To interact with the Forth interpreter, there’s
Xt gforth_find(Char * name) and Cell gforth_

execute(Xt xt).

More documentation needs to be put here.

11.1 Types

Cell, UCell: data stack elements.

Float: float stack element.

Address, Xt, Label: pointer typies to memory, Forth
words, and Forth instructions inside the VM.

11.2 Variables

Data and FP Stack pointer. Area sizes. Accessing the
Stacks

gforth_SP, gforth_FP.

Chapter 11: Integrating Gforth into C programs 424

11.3 Functions

void *gforth_engine(Xt *, stackpointers *);

Cell gforth_main(int argc, char **argv, char **env);

int gforth_args(int argc, char **argv, char **path, char **imagename);

ImageHeader* gforth_loader(char* imagename, char* path);

user_area* gforth_stacks(Cell dsize, Cell rsize, Cell fsize, Cell lsize);

void gforth_free_stacks(user_area* t);

void gforth_setstacks(user_area * t);

void gforth_free_dict();

Cell gforth_go(Xt* ip0);

Cell gforth_boot(int argc, char** argv, char* path);

void gforth_bootmessage();

Cell gforth_start(int argc, char ** argv);

Cell gforth_quit();

Xt gforth_find(Char * name);

Cell gforth_execute(Xt xt);

void gforth_cleanup();

void gforth_printmetrics();

void gforth_setwinch();

11.4 Signals

Gforth sets up signal handlers to catch exceptions and win-
dow size changes. This may interfere with your C program.

425

12 Emacs and Gforth

Gforth comes with gforth.el, an improved version of
forth.el by Goran Rydqvist (included in the TILE pack-
age). The improvements are:

• A better handling of indentation.

• A custom hilighting engine for Forth-code.

• Comment paragraph filling (M-q)

• Commenting (C-x \) and uncommenting (C-u C-x \)
of regions

• Removal of debugging tracers (C-x ~, see Section 5.24.8
[Debugging], page 334).

• Support of the info-lookup feature for looking up the
documentation of a word.

• Support for reading and writing blocks files.

To get a basic description of these features, enter Forth
mode and type C-h m.

In addition, Gforth supports Emacs quite well: The
source code locations given in error messages, debugging
output (from ~~) and failed assertion messages are in the
right format for Emacs’ compilation mode (see Section
“Running Compilations under Emacs” in Emacs Manual)
so the source location corresponding to an error or other
message is only a few keystrokes away (C-x ‘ for the next
error, C-c C-c for the error under the cursor).

Moreover, for words documented in this manual, you
can look up the glossary entry quickly by using C-h TAB

(info-lookup-symbol, see Section “Documentation Com-
mands” in Emacs Manual). This feature requires Emacs
20.3 or later and does not work for words containing :.

Chapter 12: Emacs and Gforth 426

12.1 Installing gforth.el

To make the features from gforth.el available in Emacs,
add the following lines to your .emacs file:

(autoload ’forth-mode "gforth.el")

(setq auto-mode-alist (cons ’("\\.fs\\’" . forth-mode)

auto-mode-alist))

(autoload ’forth-block-mode "gforth.el")

(setq auto-mode-alist (cons ’("\\.fb\\’" . forth-block-mode)

auto-mode-alist))

(add-hook ’forth-mode-hook (function (lambda ()

;; customize variables here:

(setq forth-indent-level 4)

(setq forth-minor-indent-level 2)

(setq forth-hilight-level 3)

;;; ...

)))

12.2 Emacs Tags

If you require etags.fs, a new TAGS file will be
produced (see Section “Tags Tables” in Emacs Manual)
that contains the definitions of all words defined after-
wards. You can then find the source for a word using
M-.. Note that Emacs can use several tags files at the
same time (e.g., one for the Gforth sources and one
for your program, see Section “Selecting a Tags Table”
in Emacs Manual). The TAGS file for the preloaded
words is $(datadir)/gforth/$(VERSION)/TAGS (e.g.,
/usr/local/share/gforth/0.2.0/TAGS). To get the
best behaviour with etags.fs, you should avoid putting
definitions both before and after require etc., otherwise

Chapter 12: Emacs and Gforth 427

you will see the same file visited several times by
commands like tags-search.

12.3 Hilighting

gforth.el comes with a custom source hilighting engine.
When you open a file in forth-mode, it will be completely
parsed, assigning faces to keywords, comments, strings etc.
While you edit the file, modified regions get parsed and
updated on-the-fly.

Use the variable ‘forth-hilight-level’ to change the level
of decoration from 0 (no hilighting at all) to 3 (the default).
Even if you set the hilighting level to 0, the parser will
still work in the background, collecting information about
whether regions of text are “compiled” or “interpreted”.
Those information are required for auto-indentation to
work properly. Set ‘forth-disable-parser’ to non-nil if your
computer is too slow to handle parsing. This will have an
impact on the smartness of the auto-indentation engine,
though.

Sometimes Forth sources define new features that
should be hilighted, new control structures, defining-words
etc. You can use the variable ‘forth-custom-words’ to
make forth-mode hilight additional words and constructs.
See the docstring of ‘forth-words’ for details (in Emacs,
type C-h v forth-words).

‘forth-custom-words’ is meant to be customized in your
.emacs file. To customize hilighing in a file-specific man-
ner, set ‘forth-local-words’ in a local-variables section at
the end of your source file (see Section “Variables” in
Emacs Manual).

Example:

Chapter 12: Emacs and Gforth 428

0 [IF]

Local Variables:

forth-local-words:

((("t:") definition-starter (font-lock-keyword-face . 1)

"[\t\n]" t name (font-lock-function-name-face . 3))

((";t") definition-ender (font-lock-keyword-face . 1)))

End:

[THEN]

12.4 Auto-Indentation

forth-mode automatically tries to indent lines in a smart
way, whenever you type TAB or break a line with C-m.

Simple customization can be achieved by setting ‘forth-
indent-level’ and ‘forth-minor-indent-level’ in your .emacs
file. For historical reasons gforth.el indents per de-
fault by multiples of 4 columns. To use the more tra-
ditional 3-column indentation, add the following lines to
your .emacs:

(add-hook ’forth-mode-hook (function (lambda ()

;; customize variables here:

(setq forth-indent-level 3)

(setq forth-minor-indent-level 1)

)))

If you want indentation to recognize non-default words,
customize it by setting ‘forth-custom-indent-words’ in your
.emacs. See the docstring of ‘forth-indent-words’ for de-
tails (in Emacs, type C-h v forth-indent-words).

To customize indentation in a file-specific manner, set
‘forth-local-indent-words’ in a local-variables section at the
end of your source file (see Section “Local Variables in
Files” in Emacs Manual).

Chapter 12: Emacs and Gforth 429

Example:

0 [IF]

Local Variables:

forth-local-indent-words:

((("t:") (0 . 2) (0 . 2))

((";t") (-2 . 0) (0 . -2)))

End:

[THEN]

12.5 Blocks Files

forth-mode Autodetects blocks files by checking whether
the length of the first line exceeds 1023 characters. It then
tries to convert the file into normal text format. When you
save the file, it will be written to disk as normal stream-
source file.

If you want to write blocks files, use forth-blocks-

mode. It inherits all the features from forth-mode, plus
some additions:

• Files are written to disk in blocks file format.

• Screen numbers are displayed in the mode line (enu-
merated beginning with the value of ‘forth-block-base’)

• Warnings are displayed when lines exceed 64 characters.

• The beginning of the currently edited block is marked
with an overlay-arrow.

There are some restrictions you should be aware of.
When you open a blocks file that contains tabulator or
newline characters, these characters will be translated into
spaces when the file is written back to disk. If tabs or new-
lines are encountered during blocks file reading, an error is
output to the echo area. So have a look at the ‘*Messages*’
buffer, when Emacs’ bell rings during reading.

Chapter 12: Emacs and Gforth 430

Please consult the docstring of forth-blocks-mode for
more information by typing C-h v forth-blocks-mode).

431

13 Image Files

An image file is a file containing an image of the Forth
dictionary, i.e., compiled Forth code and data residing in
the dictionary. By convention, we use the extension .fi

for image files.

13.1 Image Licensing Issues

An image created with gforthmi (see Section 13.5.1
[gforthmi], page 436) or savesystem (see Section 13.3
[Non-Relocatable Image Files], page 434) includes the
original image; i.e., according to copyright law it is a
derived work of the original image.

Since Gforth is distributed under the GNU GPL, the
newly created image falls under the GNU GPL, too. In
particular, this means that if you distribute the image, you
have to make all of the sources for the image available,
including those you wrote. For details see Section D.2
[GNU General Public License (Section 3)], page 482.

If you create an image with cross (see Section 13.5.2
[cross.fs], page 437), the image contains only code compiled
from the sources you gave it; if none of these sources is
under the GPL, the terms discussed above do not apply
to the image. However, if your image needs an engine (a
gforth binary) that is under the GPL, you should make
sure that you distribute both in a way that is at most a
mere aggregation, if you don’t want the terms of the GPL
to apply to the image.

Chapter 13: Image Files 432

13.2 Image File Background

Gforth consists not only of primitives (in the engine), but
also of definitions written in Forth. Since the Forth com-
piler itself belongs to those definitions, it is not possible
to start the system with the engine and the Forth source
alone. Therefore we provide the Forth code as an image
file in nearly executable form. When Gforth starts up, a C
routine loads the image file into memory, optionally relo-
cates the addresses, then sets up the memory (stacks etc.)
according to information in the image file, and (finally)
starts executing Forth code.

The default image file is gforth.fi (in the
GFORTHPATH). You can use a different image by using
the -i, --image-file or --appl-image options (see
Section 2.1 [Invoking Gforth], page 4), e.g.:

gforth-fast -i myimage.fi

There are different variants of image files, and they rep-
resent different compromises between the goals of making
it easy to generate image files and making them portable.

Win32Forth 3.4 and Mitch Bradley’s cforth use re-
location at run-time. This avoids many of the compli-
cations discussed below (image files are data relocatable
without further ado), but costs performance (one addition
per memory access) and makes it difficult to pass addresses
between Forth and library calls or other programs.

By contrast, the Gforth loader performs relocation at
image load time. The loader also has to replace tokens that
represent primitive calls with the appropriate code-field
addresses (or code addresses in the case of direct thread-
ing).

Chapter 13: Image Files 433

There are three kinds of image files, with different de-
grees of relocatability: non-relocatable, data-relocatable,
and fully relocatable image files.

These image file variants have several restrictions in
common; they are caused by the design of the image file
loader:

• There is only one segment; in particular, this means,
that an image file cannot represent ALLOCATEd memory
chunks (and pointers to them). The contents of the
stacks are not represented, either.

• The only kinds of relocation supported are: adding the
same offset to all cells that represent data addresses;
and replacing special tokens with code addresses or with
pieces of machine code.

If any complex computations involving addresses are
performed, the results cannot be represented in the im-
age file. Several applications that use such computa-
tions come to mind:

− Hashing addresses (or data structures which con-
tain addresses) for table lookup. If you use Gforth’s
tables or wordlists for this purpose, you will have
no problem, because the hash tables are recomputed
automatically when the system is started. If you use
your own hash tables, you will have to do something
similar.

− There’s a cute implementation of doubly-linked lists
that uses XORed addresses. You could represent such
lists as singly-linked in the image file, and restore the
doubly-linked representation on startup.1

1 In my opinion, though, you should think thrice before using a
doubly-linked list (whatever implementation).

Chapter 13: Image Files 434

− The code addresses of run-time routines like
docol: cannot be represented in the image file
(because their tokens would be replaced by machine
code in direct threaded implementations). As a
workaround, compute these addresses at run-time
with >code-address from the executions tokens of
appropriate words (see the definitions of docol:

and friends in kernel/getdoers.fs).

− On many architectures addresses are represented
in machine code in some shifted or mangled form.
You cannot put CODE words that contain absolute
addresses in this form in a relocatable image file.
Workarounds are representing the address in some
relative form (e.g., relative to the CFA, which is
present in some register), or loading the address
from a place where it is stored in a non-mangled
form.

13.3 Non-Relocatable Image Files

These files are simple memory dumps of the dictionary.
They are specific to the executable (i.e., gforth file) they
were created with. What’s worse, they are specific to
the place on which the dictionary resided when the im-
age was created. Now, there is no guarantee that the dic-
tionary will reside at the same place the next time you
start Gforth, so there’s no guarantee that a non-relocatable
image will work the next time (Gforth will complain in-
stead of crashing, though). Indeed, on OSs with (enabled)
address-space randomization non-relocatable images are
unlikely to work.

Chapter 13: Image Files 435

You can create a non-relocatable image file with
savesystem, e.g.:

gforth app.fs -e "savesystem app.fi bye"

savesystem ("name" –) gforth “savesystem”

13.4 Data-Relocatable Image Files

These files contain relocatable data addresses, but fixed
code addresses (instead of tokens). They are specific
to the executable (i.e., gforth file) they were created
with. Also, they disable dynamic native code genera-
tion (typically a factor of 2 in speed). You get a data-
relocatable image, if you pass the engine you want to use
through the GFORTHD environment variable to gforthmi

(see Section 13.5.1 [gforthmi], page 436), e.g.

GFORTHD="/usr/bin/gforth-fast --no-dynamic" gforthmi myimage.fi source.fs

Note that the --no-dynamic is required here for the
image to work (otherwise it will contain references to dy-
namically generated code that is not saved in the image).

13.5 Fully Relocatable Image Files

These image files have relocatable data addresses, and to-
kens for code addresses. They can be used with different
binaries (e.g., with and without debugging) on the same
machine, and even across machines with the same data
formats (byte order, cell size, floating point format), and
they work with dynamic native code generation. However,
they are usually specific to the version of Gforth they were
created with. The files gforth.fi and kernl*.fi are fully
relocatable.

Chapter 13: Image Files 436

There are two ways to create a fully relocatable image
file:

13.5.1 gforthmi

You will usually use gforthmi. If you want to create an
image file that contains everything you would load by in-
voking Gforth with gforth options, you simply say:

gforthmi file options

E.g., if you want to create an image asm.fi that has
the file asm.fs loaded in addition to the usual stuff, you
could do it like this:

gforthmi asm.fi asm.fs

gforthmi is implemented as a sh script and works like
this: It produces two non-relocatable images for different
addresses and then compares them. Its output reflects
this: first you see the output (if any) of the two Gforth
invocations that produce the non-relocatable image files,
then you see the output of the comparing program: It
displays the offset used for data addresses and the offset
used for code addresses; moreover, for each cell that cannot
be represented correctly in the image files, it displays a line
like this:

78DC BFFFFA50 BFFFFA40

This means that at offset $78dc from forthstart, one
input image contains $bffffa50, and the other contains
$bffffa40. Since these cells cannot be represented correctly
in the output image, you should examine these places in
the dictionary and verify that these cells are dead (i.e., not
read before they are written).

If you insert the option --application in front of
the image file name, you will get an image that uses the

Chapter 13: Image Files 437

--appl-image option instead of the --image-file option
(see Section 2.1 [Invoking Gforth], page 4). When you ex-
ecute such an image on Unix (by typing the image name
as command), the Gforth engine will pass all options to
the image instead of trying to interpret them as engine
options.

If you type gforthmi with no arguments, it prints some
usage instructions.

There are a few wrinkles: After processing the passed
options, the words savesystem and bye must be visible. A
special doubly indirect threaded version of the gforth exe-
cutable is used for creating the non-relocatable images; you
can pass the exact filename of this executable through the
environment variable GFORTHD (default: gforth-ditc); if
you pass a version that is not doubly indirect threaded,
you will not get a fully relocatable image, but a data-
relocatable image (see Section 13.4 [Data-Relocatable Im-
age Files], page 435), because there is no code address
offset). The normal gforth executable is used for creating
the relocatable image; you can pass the exact filename of
this executable through the environment variable GFORTH.

13.5.2 cross.fs

You can also use cross, a batch compiler that accepts a
Forth-like programming language (see Chapter 15 [Cross
Compiler], page 460).

cross allows you to create image files for machines with
different data sizes and data formats than the one used for
generating the image file. You can also use it to create an
application image that does not contain a Forth compiler.
These features are bought with restrictions and inconve-
niences in programming. E.g., addresses have to be stored

Chapter 13: Image Files 438

in memory with special words (A!, A,, etc.) in order to
make the code relocatable.

13.6 Stack and Dictionary Sizes

If you invoke Gforth with a command line flag for the size
(see Section 2.1 [Invoking Gforth], page 4), the size you
specify is stored in the dictionary. If you save the dictio-
nary with savesystem or create an image with gforthmi,
this size will become the default for the resulting image file.
E.g., the following will create a fully relocatable version of
gforth.fi with a 1MB dictionary:

gforthmi gforth.fi -m 1M

In other words, if you want to set the default size for
the dictionary and the stacks of an image, just invoke
gforthmi with the appropriate options when creating the
image.

Note: For cache-friendly behaviour (i.e., good perfor-
mance), you should make the sizes of the stacks modulo,
say, 2K, somewhat different. E.g., the default stack sizes
are: data: 16k (mod 2k=0); fp: 15.5k (mod 2k=1.5k);
return: 15k(mod 2k=1k); locals: 14.5k (mod 2k=0.5k).

13.7 Running Image Files

You can invoke Gforth with an image file image instead
of the default gforth.fi with the -i flag (see Section 2.1
[Invoking Gforth], page 4):

gforth -i image

If your operating system supports starting scripts with
a line of the form #! ..., you just have to type the image
file name to start Gforth with this image file (note that the

Chapter 13: Image Files 439

file extension .fi is just a convention). I.e., to run Gforth
with the image file image, you can just type image instead
of gforth -i image. This works because every .fi file
starts with a line of this format:

#! /usr/local/bin/gforth-0.4.0 -i

The file and pathname for the Gforth engine specified
on this line is the specific Gforth executable that it was
built against; i.e. the value of the environment variable
GFORTH at the time that gforthmi was executed.

You can make use of the same shell capability to make
a Forth source file into an executable. For example, if you
place this text in a file:

#! /usr/local/bin/gforth

." Hello, world" CR

bye

and then make the file executable (chmod +x in Unix), you
can run it directly from the command line. The sequence
#! is used in two ways; firstly, it is recognised as a “magic
sequence” by the operating system2 secondly it is treated
as a comment character by Gforth. Because of the second
usage, a space is required between #! and the path to the
executable (moreover, some Unixes require the sequence
#! /).

2 The Unix kernel actually recognises two types of files: executable
files and files of data, where the data is processed by an interpreter
that is specified on the “interpreter line” – the first line of the
file, starting with the sequence #!. There may be a small limit
(e.g., 32) on the number of characters that may be specified on
the interpreter line.

Chapter 13: Image Files 440

Most Unix systems (including Linux) support exactly
one option after the binary name. If that is not enough,
you can use the following trick:

#! /bin/sh

: ## ; 0 [if]

exec gforth -m 10M -d 1M $0 "$@"

[then]

." Hello, world" cr

bye \ caution: this prevents (further) processing of "$@"

First this script is interpreted as shell script, which
treats the first two lines as (mostly) comments, then per-
forms the third line, which invokes gforth with this script
($0) as parameter and its parameters as additional pa-
rameters ("$@"). Then this script is interpreted as Forth
script, which first defines a colon definition ##, then ig-
nores everything up to [then] and finally processes the
following Forth code. You can also use

#0 [if]

in the second line, but this works only in Gforth-0.7.0
and later.

The gforthmi approach is the fastest one, the shell-
based one is slowest (needs to start an additional shell).
An additional advantage of the shell approach is that it is
unnecessary to know where the Gforth binary resides, as
long as it is in the $PATH.

#! (–) gforth “hash-bang”

An alias for \

13.8 Modifying the Startup Sequence

You can add your own initialization to the startup se-
quence of an image through the deferred word ’cold.

Chapter 13: Image Files 441

’cold is invoked just before the image-specific command
line processing (i.e., loading files and evaluating (-e)
strings) starts.

A sequence for adding your initialization usually looks
like this:

:noname

Defers ’cold \ do other initialization stuff (e.g., rehashing wordlists)

... \ your stuff

; IS ’cold

After ’cold, Gforth processes the image options (see
Section 2.1 [Invoking Gforth], page 4), and then it per-
forms bootmessage, another deferred word. This normally
prints Gforth’s startup message and does nothing else.

So, if you want to make a turnkey image (i.e., an image
for an application instead of an extended Forth system),
you can do this in two ways:

• If you want to do your interpretation of the OS
command-line arguments, hook into ’cold. In that
case you probably also want to build the image
with gforthmi --application (see Section 13.5.1
[gforthmi], page 436) to keep the engine from process-
ing OS command line options. You can then do your
own command-line processing with next-arg

• If you want to have the normal Gforth processing of OS
command-line arguments, hook into bootmessage.

In either case, you probably do not want the word that
you execute in these hooks to exit normally, but use bye

or throw. Otherwise the Gforth startup process would
continue and eventually present the Forth command line
to the user.

’cold (–) gforth “tick-cold”

Chapter 13: Image Files 442

Hook (deferred word) for things to do right before inter-
preting the OS command-line arguments. Normally does
some initializations that you also want to perform.

bootmessage (–) gforth “bootmessage”

Hook (deferred word) executed right after interpret-
ing the OS command-line arguments. Normally prints the
Gforth startup message.

443

14 Engine

Reading this chapter is not necessary for programming
with Gforth. It may be helpful for finding your way in
the Gforth sources.

The ideas in this section have also been pub-
lished in the following papers: Bernd Paysan, ANS
fig/GNU/??? Forth (in German), Forth-Tagung
’93; M. Anton Ertl, A Portable Forth Engine
(http://www.complang.tuwien.ac.at/papers/ertl93.ps.Z),
EuroForth ’93; M. Anton Ertl, Threaded code
variations and optimizations (extended version)
(http://www.complang.tuwien.ac.at/papers/ertl02.ps.gz),
Forth-Tagung ’02.

14.1 Portability

An important goal of the Gforth Project is availability
across a wide range of personal machines. fig-Forth, and,
to a lesser extent, F83, achieved this goal by manually
coding the engine in assembly language for several then-
popular processors. This approach is very labor-intensive
and the results are short-lived due to progress in computer
architecture.

Others have avoided this problem by coding in C, e.g.,
Mitch Bradley (cforth), Mikael Patel (TILE) and Dirk
Zoller (pfe). This approach is particularly popular for
UNIX-based Forths due to the large variety of architec-
tures of UNIX machines. Unfortunately an implementa-
tion in C does not mix well with the goals of efficiency
and with using traditional techniques: Indirect or direct
threading cannot be expressed in C, and switch threading,

http://www.complang.tuwien.ac.at/papers/ertl93.ps.Z
http://www.complang.tuwien.ac.at/papers/ertl93.ps.Z
http://www.complang.tuwien.ac.at/papers/ertl02.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl02.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl02.ps.gz

Chapter 14: Engine 444

the fastest technique available in C, is significantly slower.
Another problem with C is that it is very cumbersome to
express double integer arithmetic.

Fortunately, there is a portable language that does not
have these limitations: GNU C, the version of C processed
by the GNU C compiler (see Section “Extensions to the C
Language Family” in GNU C Manual). Its labels as values
feature (see Section “Labels as Values” in GNU C Man-
ual) makes direct and indirect threading possible, its long
long type (see Section “Double-Word Integers” in GNU C
Manual) corresponds to Forth’s double numbers on many
systems. GNU C is freely available on all important (and
many unimportant) UNIX machines, VMS, 80386s run-
ning MS-DOS, the Amiga, and the Atari ST, so a Forth
written in GNU C can run on all these machines.

Writing in a portable language has the reputation of
producing code that is slower than assembly. For our Forth
engine we repeatedly looked at the code produced by the
compiler and eliminated most compiler-induced inefficien-
cies by appropriate changes in the source code.

However, register allocation cannot be portably influ-
enced by the programmer, leading to some inefficiencies
on register-starved machines. We use explicit register dec-
larations (see Section “Variables in Specified Registers”
in GNU C Manual) to improve the speed on some ma-
chines. They are turned on by using the configuration flag
--enable-force-reg (gcc switch -DFORCE_REG). Unfor-
tunately, this feature not only depends on the machine, but
also on the compiler version: On some machines some com-
piler versions produce incorrect code when certain explicit
register declarations are used. So by default -DFORCE_REG
is not used.

Chapter 14: Engine 445

14.2 Threading

GNU C’s labels as values extension (available since
gcc-2.0, see Section “Labels as Values” in GNU C
Manual) makes it possible to take the address of label
by writing &&label. This address can then be used in
a statement like goto *address. I.e., goto *&&x is the
same as goto x.

With this feature an indirect threaded NEXT looks like:

cfa = *ip++;

ca = *cfa;

goto *ca;

For those unfamiliar with the names: ip is the Forth in-
struction pointer; the cfa (code-field address) corresponds
to Standard Forth’s execution token and points to the code
field of the next word to be executed; The ca (code ad-
dress) fetched from there points to some executable code,
e.g., a primitive or the colon definition handler docol.

Direct threading is even simpler:

ca = *ip++;

goto *ca;

Of course we have packaged the whole thing neatly in
macros called NEXT and NEXT1 (the part of NEXT after fetch-
ing the cfa).

14.2.1 Scheduling

There is a little complication: Pipelined and superscalar
processors, i.e., RISC and some modern CISC machines
can process independent instructions while waiting for the
results of an instruction. The compiler usually reorders
(schedules) the instructions in a way that achieves good

Chapter 14: Engine 446

usage of these delay slots. However, on our first tries the
compiler did not do well on scheduling primitives. E.g.,
for + implemented as

n=sp[0]+sp[1];

sp++;

sp[0]=n;

NEXT;

the NEXT comes strictly after the other code, i.e., there
is nearly no scheduling. After a little thought the problem
becomes clear: The compiler cannot know that sp and ip

point to different addresses (and the version of gcc we used
would not know it even if it was possible), so it could not
move the load of the cfa above the store to the TOS. Indeed
the pointers could be the same, if code on or very near the
top of stack were executed. In the interest of speed we
chose to forbid this probably unused “feature” and helped
the compiler in scheduling: NEXT is divided into several
parts: NEXT_P0, NEXT_P1 and NEXT_P2). + now looks like:

NEXT_P0;

n=sp[0]+sp[1];

sp++;

NEXT_P1;

sp[0]=n;

NEXT_P2;

There are various schemes that distribute the different
operations of NEXT between these parts in several ways;
in general, different schemes perform best on different pro-
cessors. We use a scheme for most architectures that per-
forms well for most processors of this architecture; in the
future we may switch to benchmarking and chosing the
scheme on installation time.

Chapter 14: Engine 447

14.2.2 Direct or Indirect Threaded?

Threaded forth code consists of references to primitives
(simple machine code routines like +) and to non-
primitives (e.g., colon definitions, variables, constants);
for a specific class of non-primitives (e.g., variables) there
is one code routine (e.g., dovar), but each variable needs
a separate reference to its data.

Traditionally Forth has been implemented as indirect
threaded code, because this allows to use only one cell to
reference a non-primitive (basically you point to the data,
and find the code address there).

However, threaded code in Gforth (since 0.6.0) uses two
cells for non-primitives, one for the code address, and one
for the data address; the data pointer is an immediate ar-
gument for the virtual machine instruction represented by
the code address. We call this primitive-centric threaded
code, because all code addresses point to simple primitives.
E.g., for a variable, the code address is for lit (also used
for integer literals like 99).

Primitive-centric threaded code allows us to use (faster)
direct threading as dispatch method, completely portably
(direct threaded code in Gforth before 0.6.0 required
architecture-specific code). It also eliminates the perfor-
mance problems related to I-cache consistency that 386
implementations have with direct threaded code, and al-
lows additional optimizations.

There is a catch, however: the xt parameter of execute
can occupy only one cell, so how do we pass non-primitives
with their code and data addresses to them? Our answer
is to use indirect threaded dispatch for execute and other
words that use a single-cell xt. So, normal threaded code

Chapter 14: Engine 448

in colon definitions uses direct threading, and execute and
similar words, which dispatch to xts on the data stack, use
indirect threaded code. We call this hybrid direct/indirect
threaded code.

The engines gforth and gforth-fast use hybrid di-
rect/indirect threaded code. This means that with these
engines you cannot use , to compile an xt. Instead, you
have to use compile,.

If you want to compile xts with ,, use gforth-itc.
This engine uses plain old indirect threaded code. It still
compiles in a primitive-centric style, so you cannot use
compile, instead of , (e.g., for producing tables of xts
with] word1 word2 ... [). If you want to do that, you
have to use gforth-itc and execute ’ , is compile,.
Your program can check if it is running on a hybrid di-
rect/indirect threaded engine or a pure indirect threaded
engine with threading-method (see Section 5.28 [Thread-
ing Words], page 381).

14.2.3 Dynamic Superinstructions

The engines gforth and gforth-fast use another opti-
mization: Dynamic superinstructions with replication. As
an example, consider the following colon definition:

: squared (n1 -- n2)

dup * ;

Gforth compiles this into the threaded code sequence

dup

*

;s

In normal direct threaded code there is a code address
occupying one cell for each of these primitives. Each code

Chapter 14: Engine 449

address points to a machine code routine, and the inter-
preter jumps to this machine code in order to execute the
primitive. The routines for these three primitives are (in
gforth-fast on the 386):

Code dup

($804B950) add esi , # -4 \ $83 $C6 $FC

($804B953) add ebx , # 4 \ $83 $C3 $4

($804B956) mov dword ptr 4 [esi] , ecx \ $89 $4E $4

($804B959) jmp dword ptr FC [ebx] \ $FF $63 $FC

end-code

Code *

($804ACC4) mov eax , dword ptr 4 [esi] \ $8B $46 $4

($804ACC7) add esi , # 4 \ $83 $C6 $4

($804ACCA) add ebx , # 4 \ $83 $C3 $4

($804ACCD) imul ecx , eax \ $F $AF $C8

($804ACD0) jmp dword ptr FC [ebx] \ $FF $63 $FC

end-code

Code ;s

($804A693) mov eax , dword ptr [edi] \ $8B $7

($804A695) add edi , # 4 \ $83 $C7 $4

($804A698) lea ebx , dword ptr 4 [eax] \ $8D $58 $4

($804A69B) jmp dword ptr FC [ebx] \ $FF $63 $FC

end-code

With dynamic superinstructions and replication the
compiler does not just lay down the threaded code, but
also copies the machine code fragments, usually without
the jump at the end.

($4057D27D) add esi , # -4 \ $83 $C6 $FC

($4057D280) add ebx , # 4 \ $83 $C3 $4

($4057D283) mov dword ptr 4 [esi] , ecx \ $89 $4E $4

($4057D286) mov eax , dword ptr 4 [esi] \ $8B $46 $4

($4057D289) add esi , # 4 \ $83 $C6 $4

Chapter 14: Engine 450

($4057D28C) add ebx , # 4 \ $83 $C3 $4

($4057D28F) imul ecx , eax \ $F $AF $C8

($4057D292) mov eax , dword ptr [edi] \ $8B $7

($4057D294) add edi , # 4 \ $83 $C7 $4

($4057D297) lea ebx , dword ptr 4 [eax] \ $8D $58 $4

($4057D29A) jmp dword ptr FC [ebx] \ $FF $63 $FC

Only when a threaded-code control-flow change hap-
pens (e.g., in ;s), the jump is appended. This optimiza-
tion eliminates many of these jumps and makes the rest
much more predictable. The speedup depends on the pro-
cessor and the application; on the Athlon and Pentium III
this optimization typically produces a speedup by a factor
of 2.

The code addresses in the direct-threaded code are set
to point to the appropriate points in the copied machine
code, in this example like this:

primitive code address

dup $4057D27D

* $4057D286

;s $4057D292

Thus there can be threaded-code jumps to any place in
this piece of code. This also simplifies decompilation quite
a bit.

You can disable this optimization with --no-dynamic.
You can use the copying without eliminating the jumps
(i.e., dynamic replication, but without superinstructions)
with --no-super; this gives the branch prediction benefit
alone; the effect on performance depends on the CPU; on
the Athlon and Pentium III the speedup is a little less than
for dynamic superinstructions with replication.

Chapter 14: Engine 451

One use of these options is if you want to patch the
threaded code. With superinstructions, many of the dis-
patch jumps are eliminated, so patching often has no effect.
These options preserve all the dispatch jumps.

On some machines dynamic superinstructions are dis-
abled by default, because it is unsafe on these machines.
However, if you feel adventurous, you can enable it with
--dynamic.

14.2.4 DOES>

One of the most complex parts of a Forth engine is dodoes,
i.e., the chunk of code executed by every word defined by a
CREATE...DOES> pair; actually with primitive-centric code,
this is only needed if the xt of the word is executed. The
main problem here is: How to find the Forth code to be
executed, i.e. the code after the DOES> (the DOES>-code)?
There are two solutions:

In fig-Forth the code field points directly to the dodoes
and the DOES>-code address is stored in the cell after the
code address (i.e. at CFA cell+). It may seem that this
solution is illegal in the Forth-79 and all later standards,
because in fig-Forth this address lies in the body (which is
illegal in these standards). However, by making the code
field larger for all words this solution becomes legal again.
We use this approach. Leaving a cell unused in most words
is a bit wasteful, but on the machines we are targeting this
is hardly a problem.

14.3 Primitives

Chapter 14: Engine 452

14.3.1 Automatic Generation

Since the primitives are implemented in a portable lan-
guage, there is no longer any need to minimize the number
of primitives. On the contrary, having many primitives has
an advantage: speed. In order to reduce the number of er-
rors in primitives and to make programming them easier,
we provide a tool, the primitive generator (prims2x.fs
aka Vmgen, see Section “Introduction” in Vmgen), that
automatically generates most (and sometimes all) of the
C code for a primitive from the stack effect notation. The
source for a primitive has the following form:

Forth-name (stack-effect) category [pronounc.]
[""glossary entry""]
C code
[:
Forth code]

The items in brackets are optional. The category and
glossary fields are there for generating the documentation,
the Forth code is there for manual implementations on ma-
chines without GNU C. E.g., the source for the primitive
+ is:

+ (n1 n2 -- n) core plus

n = n1+n2;

This looks like a specification, but in fact n = n1+n2 is
C code. Our primitive generation tool extracts a lot of
information from the stack effect notations1: The number
of items popped from and pushed on the stack, their type,
and by what name they are referred to in the C code. It

1 We use a one-stack notation, even though we have separate data
and floating-point stacks; The separate notation can be generated
easily from the unified notation.

Chapter 14: Engine 453

then generates a C code prelude and postlude for each
primitive. The final C code for + looks like this:

I_plus: /* + (n1 n2 -- n) */ /* label, stack effect */

/* */ /* documentation */

NAME("+") /* debugging output (with -DDEBUG) */

{

DEF_CA /* definition of variable ca (indirect threading) */

Cell n1; /* definitions of variables */

Cell n2;

Cell n;

NEXT_P0; /* NEXT part 0 */

n1 = (Cell) sp[1]; /* input */

n2 = (Cell) TOS;

sp += 1; /* stack adjustment */

{

n = n1+n2; /* C code taken from the source */

}

NEXT_P1; /* NEXT part 1 */

TOS = (Cell)n; /* output */

NEXT_P2; /* NEXT part 2 */

}

This looks long and inefficient, but the GNU C com-
piler optimizes quite well and produces optimal code for
+ on, e.g., the R3000 and the HP RISC machines: Defin-
ing the ns does not produce any code, and using them as
intermediate storage also adds no cost.

There are also other optimizations that are not illus-
trated by this example: assignments between simple vari-
ables are usually for free (copy propagation). If one of the
stack items is not used by the primitive (e.g. in drop), the
compiler eliminates the load from the stack (dead code
elimination). On the other hand, there are some things

Chapter 14: Engine 454

that the compiler does not do, therefore they are per-
formed by prims2x.fs: The compiler does not optimize
code away that stores a stack item to the place where it
just came from (e.g., over).

While programming a primitive is usually easy, there
are a few cases where the programmer has to take the
actions of the generator into account, most notably ?dup,
but also words that do not (always) fall through to NEXT.

For more information

14.3.2 TOS Optimization

An important optimization for stack machine emulators,
e.g., Forth engines, is keeping one or more of the top stack
items in registers. If a word has the stack effect in1...inx
-- out1...outy, keeping the top n items in registers

• is better than keeping n-1 items, if x>=n and y>=n,
due to fewer loads from and stores to the stack.

• is slower than keeping n-1 items, if x<>y and x<n and
y<n, due to additional moves between registers.

In particular, keeping one item in a register is never
a disadvantage, if there are enough registers. Keeping
two items in registers is a disadvantage for frequent words
like ?branch, constants, variables, literals and i. There-
fore our generator only produces code that keeps zero or
one items in registers. The generated C code covers both
cases; the selection between these alternatives is made at
C-compile time using the switch -DUSE_TOS. TOS in the
C code for + is just a simple variable name in the one-
item case, otherwise it is a macro that expands into sp[0].
Note that the GNU C compiler tries to keep simple vari-

Chapter 14: Engine 455

ables like TOS in registers, and it usually succeeds, if there
are enough registers.

The primitive generator performs the TOS optimiza-
tion for the floating-point stack, too (-DUSE_FTOS). For
floating-point operations the benefit of this optimization
is even larger: floating-point operations take quite long
on most processors, but can be performed in parallel with
other operations as long as their results are not used. If
the FP-TOS is kept in a register, this works. If it is kept
on the stack, i.e., in memory, the store into memory has to
wait for the result of the floating-point operation, length-
ening the execution time of the primitive considerably.

The TOS optimization makes the automatic generation
of primitives a bit more complicated. Just replacing all
occurrences of sp[0] by TOS is not sufficient. There are
some special cases to consider:

• In the case of dup (w -- w w) the generator must not
eliminate the store to the original location of the item
on the stack, if the TOS optimization is turned on.

• Primitives with stack effects of the form -- out1...outy
must store the TOS to the stack at the start. Likewise,
primitives with the stack effect in1...inx -- must load
the TOS from the stack at the end. But for the null
stack effect -- no stores or loads should be generated.

14.3.3 Produced code

To see what assembly code is produced for the primitives
on your machine with your compiler and your flag set-
tings, type make engine.s and look at the resulting file
engine.s. Alternatively, you can also disassemble the
code of primitives with see on some architectures.

Chapter 14: Engine 456

14.4 Performance

On RISCs the Gforth engine is very close to optimal;
i.e., it is usually impossible to write a significantly faster
threaded-code engine.

On register-starved machines like the 386 architecture
processors improvements are possible, because gcc does
not utilize the registers as well as a human, even with
explicit register declarations; e.g., Bernd Beuster wrote a
Forth system fragment in assembly language and hand-
tuned it for the 486; this system is 1.19 times faster on the
Sieve benchmark on a 486DX2/66 than Gforth compiled
with gcc-2.6.3 with -DFORCE_REG. The situation has im-
proved with gcc-2.95 and gforth-0.4.9; now the most im-
portant virtual machine registers fit in real registers (and
we can even afford to use the TOS optimization), resulting
in a speedup of 1.14 on the sieve over the earlier results.
And dynamic superinstructions provide another speedup
(but only around a factor 1.2 on the 486).

The potential advantage of assembly language imple-
mentations is not necessarily realized in complete Forth
systems: We compared Gforth-0.5.9 (direct threaded,
compiled with gcc-2.95.1 and -DFORCE_REG) with
Win32Forth 1.2093 (newer versions are reportedly much
faster), LMI’s NT Forth (Beta, May 1994) and Eforth
(with and without peephole (aka pinhole) optimization
of the threaded code); all these systems were written
in assembly language. We also compared Gforth with
three systems written in C: PFE-0.9.14 (compiled with
gcc-2.6.3 with the default configuration for Linux:
-O2 -fomit-frame-pointer -DUSE_REGS -DUNROLL_

NEXT), ThisForth Beta (compiled with gcc-2.6.3 -O3

Chapter 14: Engine 457

-fomit-frame-pointer; ThisForth employs peephole
optimization of the threaded code) and TILE (compiled
with make opt). We benchmarked Gforth, PFE, This-
Forth and TILE on a 486DX2/66 under Linux. Kenneth
O’Heskin kindly provided the results for Win32Forth
and NT Forth on a 486DX2/66 with similar memory
performance under Windows NT. Marcel Hendrix ported
Eforth to Linux, then extended it to run the benchmarks,
added the peephole optimizer, ran the benchmarks and
reported the results.

We used four small benchmarks: the ubiquitous Sieve;
bubble-sorting and matrix multiplication come from the
Stanford integer benchmarks and have been translated into
Forth by Martin Fraeman; we used the versions included
in the TILE Forth package, but with bigger data set sizes;
and a recursive Fibonacci number computation for bench-
marking calling performance. The following table shows
the time taken for the benchmarks scaled by the time taken
by Gforth (in other words, it shows the speedup factor that
Gforth achieved over the other systems).

relative Win32- NT eforth This-

time Gforth Forth Forth eforth +opt PFE Forth TILE

sieve 1.00 2.16 1.78 2.16 1.32 2.46 4.96 13.37

bubble 1.00 1.93 2.07 2.18 1.29 2.21 5.70

matmul 1.00 1.92 1.76 1.90 0.96 2.06 5.32

fib 1.00 2.32 2.03 1.86 1.31 2.64 4.55 6.54

You may be quite surprised by the good performance
of Gforth when compared with systems written in assem-
bly language. One important reason for the disappointing
performance of these other systems is probably that they
are not written optimally for the 486 (e.g., they use the
lods instruction). In addition, Win32Forth uses a com-

Chapter 14: Engine 458

fortable, but costly method for relocating the Forth im-
age: like cforth, it computes the actual addresses at run
time, resulting in two address computations per NEXT (see
Section 13.2 [Image File Background], page 432).

The speedup of Gforth over PFE, ThisForth and TILE
can be easily explained with the self-imposed restriction
of the latter systems to standard C, which makes efficient
threading impossible (however, the measured implementa-
tion of PFE uses a GNU C extension: see Section “Defining
Global Register Variables” in GNU C Manual). Moreover,
current C compilers have a hard time optimizing other as-
pects of the ThisForth and the TILE source.

The performance of Gforth on 386 architecture pro-
cessors varies widely with the version of gcc used. E.g.,
gcc-2.5.8 failed to allocate any of the virtual machine
registers into real machine registers by itself and would
not work correctly with explicit register declarations, giv-
ing a significantly slower engine (on a 486DX2/66 running
the Sieve) than the one measured above.

Note that there have been several releases of
Win32Forth since the release presented here, so the
results presented above may have little predictive value
for the performance of Win32Forth today (results for the
current release on an i486DX2/66 are welcome).

In Translating Forth to Efficient C
(http://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz)
by M. Anton Ertl and Martin Maierhofer (presented at
EuroForth ’95), an indirect threaded version of Gforth is
compared with Win32Forth, NT Forth, PFE, ThisForth,
and several native code systems; that version of Gforth is
slower on a 486 than the version used here. You can find
a newer version of these measurements at http://www.

http://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz
http://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz
http://www.complang.tuwien.ac.at/forth/performance.html

Chapter 14: Engine 459

complang.tuwien.ac.at/forth/performance.html.
You can find numbers for Gforth on various machines in
Benchres.

http://www.complang.tuwien.ac.at/forth/performance.html
http://www.complang.tuwien.ac.at/forth/performance.html

460

15 Cross Compiler

The cross compiler is used to bootstrap a Forth kernel.
Since Gforth is mostly written in Forth, including crucial
parts like the outer interpreter and compiler, it needs com-
piled Forth code to get started. The cross compiler allows
to create new images for other architectures, even running
under another Forth system.

15.1 Using the Cross Compiler

The cross compiler uses a language that resembles Forth,
but isn’t. The main difference is that you can execute
Forth code after definition, while you usually can’t exe-
cute the code compiled by cross, because the code you are
compiling is typically for a different computer than the one
you are compiling on.

The Makefile is already set up to allow you to create
kernels for new architectures with a simple make com-
mand. The generic kernels using the GCC compiled vir-
tual machine are created in the normal build process with
make. To create a embedded Gforth executable for e.g.
the 8086 processor (running on a DOS machine), type

make kernl-8086.fi

This will use the machine description from the
arch/8086 directory to create a new kernel. A machine
file may look like that:

\ Parameter for target systems 06oct92py

4 Constant cell \ cell size in bytes

2 Constant cell<< \ cell shift to bytes

5 Constant cell>bit \ cell shift to bits

Chapter 15: Cross Compiler 461

8 Constant bits/char \ bits per character

8 Constant bits/byte \ bits per byte [default: 8]

8 Constant float \ bytes per float

8 Constant /maxalign \ maximum alignment in bytes

false Constant bigendian \ byte order

(true=big, false=little)

include machpc.fs \ feature list

This part is obligatory for the cross compiler itself, the
feature list is used by the kernel to conditionally compile
some features in and out, depending on whether the target
supports these features.

There are some optional features, if you define your
own primitives, have an assembler, or need special, non-
standard preparation to make the boot process work.
asm-include includes an assembler, prims-include in-
cludes primitives, and >boot prepares for booting.

: asm-include ." Include assembler" cr

s" arch/8086/asm.fs" included ;

: prims-include ." Include primitives" cr

s" arch/8086/prim.fs" included ;

: >boot ." Prepare booting" cr

s" ’ boot >body into-forth 1+ !" evaluate ;

These words are used as sort of macro during the cross
compilation in the file kernel/main.fs. Instead of using
these macros, it would be possible — but more complicated
— to write a new kernel project file, too.

kernel/main.fs expects the machine description file
name on the stack; the cross compiler itself (cross.fs)

Chapter 15: Cross Compiler 462

assumes that either mach-file leaves a counted string on
the stack, or machine-file leaves an address, count pair
of the filename on the stack.

The feature list is typically controlled using SetValue,
generic files that are used by several projects can use
DefaultValue instead. Both functions work like Value,
when the value isn’t defined, but SetValue works like to

if the value is defined, and DefaultValue doesn’t set any-
thing, if the value is defined.

\ generic mach file for pc gforth 03sep97jaw

true DefaultValue NIL \ relocating

>ENVIRON

true DefaultValue file \ controls the presence of the

\ file access wordset

true DefaultValue OS \ flag to indicate a operating system

true DefaultValue prims \ true: primitives are c-code

true DefaultValue floating \ floating point wordset is present

true DefaultValue glocals \ gforth locals are present

\ will be loaded

true DefaultValue dcomps \ double number comparisons

true DefaultValue hash \ hashing primitives are loaded/present

true DefaultValue xconds \ used together with glocals,

\ special conditionals supporting gforths’

\ local variables

Chapter 15: Cross Compiler 463

true DefaultValue header \ save a header information

true DefaultValue backtrace \ enables backtrace code

false DefaultValue ec

false DefaultValue crlf

cell 2 = [IF] &32 [ELSE] &256 [THEN] KB DefaultValue kernel-size

&16 KB DefaultValue stack-size

&15 KB &512 + DefaultValue fstack-size

&15 KB DefaultValue rstack-size

&14 KB &512 + DefaultValue lstack-size

15.2 How the Cross Compiler Works

464

Appendix A Bugs

Known bugs are described in the file BUGS in the Gforth
distribution.

If you find a bug, please submit a bug report through
https://savannah.gnu.org/bugs/?func=addbug&

group=gforth.

• A program (or a sequence of keyboard commands) that
reproduces the bug.

• A description of what you think constitutes the buggy
behaviour.

• The Gforth version used (it is announced at the start
of an interactive Gforth session).

• The machine and operating system (on Unix systems
uname -a will report this information).

• The installation options (you can find the configure op-
tions at the start of config.status) and configuration
(configure output or config.cache).

• A complete list of changes (if any) you (or your in-
staller) have made to the Gforth sources.

For a thorough guide on reporting bugs read Section
“How to Report Bugs” in GNU C Manual.

https://savannah.gnu.org/bugs/?func=addbug&group=gforth
https://savannah.gnu.org/bugs/?func=addbug&group=gforth

465

Appendix B Authors and
Ancestors of
Gforth

B.1 Authors and Contributors

The Gforth project was started in mid-1992 by Bernd
Paysan and Anton Ertl. The third major author was Jens
Wilke. Neal Crook contributed a lot to the manual. As-
semblers and disassemblers were contributed by Andrew
McKewan, Christian Pirker, Bernd Thallner, and Michal
Revucky. Lennart Benschop (who was one of Gforth’s first
users, in mid-1993) and Stuart Ramsden inspired us with
their continuous feedback. Lennart Benshop contributed
glosgen.fs, while Stuart Ramsden has been working on
automatic support for calling C libraries. Helpful com-
ments also came from Paul Kleinrubatscher, Christian
Pirker, Dirk Zoller, Marcel Hendrix, John Wavrik, Barrie
Stott, Marc de Groot, Jorge Acerada, Bruce Hoyt, Robert
Epprecht, Dennis Ruffer and David N. Williams. Since
the release of Gforth-0.2.1 there were also helpful com-
ments from many others; thank you all, sorry for not list-
ing you here (but digging through my mailbox to extract
your names is on my to-do list).

Gforth also owes a lot to the authors of the tools we
used (GCC, CVS, and autoconf, among others), and to
the creators of the Internet: Gforth was developed across
the Internet, and its authors did not meet physically for
the first 4 years of development.

Appendix B: Authors and Ancestors of Gforth 466

B.2 Pedigree

Gforth descends from bigFORTH (1993) and fig-Forth. Of
course, a significant part of the design of Gforth was pre-
scribed by Standard Forth.

Bernd Paysan wrote bigFORTH, a descendent from
TurboForth, an unreleased 32 bit native code version of
VolksForth for the Atari ST, written mostly by Dietrich
Weineck.

VolksForth was written by Klaus Schleisiek, Bernd Pen-
nemann, Georg Rehfeld and Dietrich Weineck for the C64
(called UltraForth there) in the mid-80s and ported to the
Atari ST in 1986. It descends from fig-Forth.

A team led by Bill Ragsdale implemented fig-Forth on
many processors in 1979. Robert Selzer and Bill Ragsdale
developed the original implementation of fig-Forth for the
6502 based on microForth.

The principal architect of microForth was Dean Sander-
son. microForth was FORTH, Inc.’s first off-the-shelf
product. It was developed in 1976 for the 1802, and sub-
sequently implemented on the 8080, the 6800 and the Z80.

All earlier Forth systems were custom-made, usually
by Charles Moore, who discovered (as he puts it) Forth
during the late 60s. The first full Forth existed in 1971.

A part of the information in this sec-
tion comes from The Evolution of Forth
(http://www.forth.com/resources/evolution/index.html)
by Elizabeth D. Rather, Donald R. Colburn and
Charles H. Moore, presented at the HOPL-II con-
ference and preprinted in SIGPLAN Notices 28(3),
1993. You can find more historical and genealog-
ical information about Forth there. For a more

http://www.forth.com/resources/evolution/index.html
http://www.forth.com/resources/evolution/index.html

Appendix B: Authors and Ancestors of Gforth 467

general (and graphical) Forth family tree look see
http://www.complang.tuwien.ac.at/forth/family-tree/,
Forth Family Tree and Timeline.

http://www.complang.tuwien.ac.at/forth/family-tree/

468

Appendix C Other Forth-
related
information

There is an active news group (comp.lang.forth) dis-
cussing Forth (including Gforth) and Forth-related issues.
Its FAQs (http://www.complang.tuwien.ac.at/forth/
faq/faq-general-2.html) (frequently asked questions
and their answers) contains a lot of information on Forth.
You should read it before posting to comp.lang.forth.

The Forth standard is most usable in its HTML form
(http://forth-standard.org/).

http://www.complang.tuwien.ac.at/forth/faq/faq-general-2.html
http://www.complang.tuwien.ac.at/forth/faq/faq-general-2.html
http://forth-standard.org/
http://forth-standard.org/

469

Appendix D Licenses

D.1 GNU Free Documentation
License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, text-
book, or other functional and useful document free in
the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not
being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that
derivative works of the document must themselves be
free in the same sense. It complements the GNU Gen-
eral Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for
manuals for free software, because free software needs
free documentation: a free program should come with
manuals providing the same freedoms that the software

Appendix D: Licenses 470

does. But this License is not limited to software man-
uals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed
book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in
any medium, that contains a notice placed by the copy-
right holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide,
royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Docu-
ment”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work
containing the Document or a portion of it, either
copied verbatim, or with modifications and/or trans-
lated into another language.

A “Secondary Section” is a named appendix or a front-
matter section of the Document that deals exclusively
with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Docu-
ment is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The re-
lationship could be a matter of historical connection
with the subject or with related matters, or of legal,

Appendix D: Licenses 471

commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sec-
tions whose titles are designated, as being those of In-
variant Sections, in the notice that says that the Doc-
ument is released under this License. If a section does
not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a
machine-readable copy, represented in a format whose
specification is available to the general public, that is
suitable for revising the document straightforwardly
with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation
to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image
format is not Transparent if used for any substantial

Appendix D: Licenses 472

amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies in-
clude plain ascii without markup, Texinfo input for-
mat, LaTEX input format, SGML or XML using a pub-
licly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include propri-
etary formats that can be read and edited only by pro-
prietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally avail-
able, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output pur-
poses only.

The “Title Page” means, for a printed book, the title
page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to ap-
pear in the title page. For works in formats which do
not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of
the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Ac-
knowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

Appendix D: Licenses 473

The Document may include Warranty Disclaimers next
to the notice which states that this License applies to
the Document. These Warranty Disclaimers are con-
sidered to be included by reference in this License, but
only as regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any
medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the
license notice saying this License applies to the Doc-
ument are reproduced in all copies, and that you add
no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or con-
trol the reading or further copying of the copies you
make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large
enough number of copies you must also follow the con-
ditions in section 3.

You may also lend copies, under the same conditions
stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that
commonly have printed covers) of the Document, num-
bering more than 100, and the Document’s license no-
tice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these

Appendix D: Licenses 474

copies. The front cover must present the full title with
all words of the title equally prominent and visible.
You may add other material on the covers in addition.
Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too volumi-
nous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Doc-
ument numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the gen-
eral network-using public has access to download using
public-standard network protocols a complete Trans-
parent copy of the Document, free of added material.
If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until
at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retail-
ers) of that edition to the public.

It is requested, but not required, that you contact the
authors of the Document well before redistributing any
large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS

Appendix D: Licenses 475

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version
under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribu-
tion and modification of the Modified Version to who-
ever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a
title distinct from that of the Document, and from
those of previous versions (which should, if there
were any, be listed in the History section of the Doc-
ument). You may use the same title as a previous
version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more
persons or entities responsible for authorship of the
modifications in the Modified Version, together with
at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of
the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modi-
fications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a
license notice giving the public permission to use the
Modified Version under the terms of this License, in
the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invari-

Appendix D: Licenses 476

ant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its
Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add
an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the
Document for public access to a Transparent copy
of the Document, and likewise the network locations
given in the Document for previous versions it was
based on. These may be placed in the “History” sec-
tion. You may omit a network location for a work
that was published at least four years before the
Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or
“Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled “Endorsements”. Such a

Appendix D: Licenses 477

section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled
“Endorsements” or to conflict in title with any In-
variant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sec-
tions or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you
may at your option designate some or all of these sec-
tions as invariant. To do this, add their titles to the list
of Invariant Sections in the Modified Version’s license
notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”,
provided it contains nothing but endorsements of your
Modified Version by various parties—for example,
statements of peer review or that the text has been
approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-
Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the
Document already includes a cover text for the same
cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one,
on explicit permission from the previous publisher that
added the old one.

Appendix D: Licenses 478

The author(s) and publisher(s) of the Document do not
by this License give permission to use their names for
publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents
released under this License, under the terms defined in
section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work
in its license notice, and that you preserve all their War-
ranty Disclaimers.

The combined work need only contain one copy of this
License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different
contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or
else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the
license notice of the combined work.

In the combination, you must combine any sections
Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

Appendix D: Licenses 479

You may make a collection consisting of the Document
and other documents released under this License, and
replace the individual copies of this License in the var-
ious documents with a single copy that is included in
the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collec-
tion, and distribute it individually under this License,
provided you insert a copy of this License into the ex-
tracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with
other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the
compilation’s users beyond what the individual works
permit. When the Document is included in an aggre-
gate, this License does not apply to the other works
in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applica-
ble to these copies of the Document, then if the Docu-
ment is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the elec-
tronic equivalent of covers if the Document is in elec-
tronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

Appendix D: Licenses 480

8. TRANSLATION

Translation is considered a kind of modification, so you
may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copy-
right holders, but you may include translations of some
or all Invariant Sections in addition to the original ver-
sions of these Invariant Sections. You may include a
translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version
of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the
translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledge-
ments”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the
Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense
or distribute the Document is void, and will automat-
ically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from
you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation License

Appendix D: Licenses 481

from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.

gnu.org/copyleft/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a par-
ticular numbered version of this License “or any later
version” applies to it, you have the option of following
the terms and conditions either of that specified version
or of any later version that has been published (not as
a draft) by the Free Software Foundation. If the Docu-
ment does not specify a version number of this License,
you may choose any version ever published (not as a
draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix D: Licenses 482

D.1.1 ADDENDUM: How to use this
License for your documents

To use this License in a document you have written, in-
clude a copy of the License in the document and put the
following copyright and license notices just after the title
page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and
Back-Cover Texts, replace the “with...Texts.” line with
this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or
some other combination of the three, merge those two al-
ternatives to suit the situation.

If your document contains nontrivial examples of pro-
gram code, we recommend releasing these examples in par-
allel under your choice of free software license, such as the
GNU General Public License, to permit their use in free
software.

D.2 GNU GENERAL PUBLIC
LICENSE

Version 3, 29 June 2007

Appendix D: Licenses 483

Copyright c© 2007 Free Software Foundation, Inc. http://
fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license
for software and other kinds of works.

The licenses for most software and other practical works
are designed to take away your freedom to share and
change the works. By contrast, the GNU General Pub-
lic License is intended to guarantee your freedom to share
and change all versions of a program—to make sure it re-
mains free software for all its users. We, the Free Software
Foundation, use the GNU General Public License for most
of our software; it applies also to any other work released
this way by its authors. You can apply it to your programs,
too.

When we speak of free software, we are referring to free-
dom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you
receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free
programs, and that you know you can do these things.

To protect your rights, we need to prevent others from
denying you these rights or asking you to surrender the
rights. Therefore, you have certain responsibilities if you
distribute copies of the software, or if you modify it: re-
sponsibilities to respect the freedom of others.

http://fsf.org/
http://fsf.org/

Appendix D: Licenses 484

For example, if you distribute copies of such a program,
whether gratis or for a fee, you must pass on to the recipi-
ents the same freedoms that you received. You must make
sure that they, too, receive or can get the source code.
And you must show them these terms so they know their
rights.

Developers that use the GNU GPL protect your rights
with two steps: (1) assert copyright on the software, and
(2) offer you this License giving you legal permission to
copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL
clearly explains that there is no warranty for this free soft-
ware. For both users’ and authors’ sake, the GPL requires
that modified versions be marked as changed, so that their
problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to in-
stall or run modified versions of the software inside them,
although the manufacturer can do so. This is fundamen-
tally incompatible with the aim of protecting users’ free-
dom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals
to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to
prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to ex-
tend this provision to those domains in future versions of
the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by soft-
ware patents. States should not allow patents to restrict
development and use of software on general-purpose com-
puters, but in those that do, we wish to avoid the special

Appendix D: Licenses 485

danger that patents applied to a free program could make
it effectively proprietary. To prevent this, the GPL as-
sures that patents cannot be used to render the program
non-free.

The precise terms and conditions for copying, distribu-
tion and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General
Public License.

“Copyright” also means copyright-like laws that apply
to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work li-
censed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals
or organizations.

To “modify” a work means to copy from or adapt all
or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy.
The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with
it that, without permission, would make you directly
or secondarily liable for infringement under applicable
copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copy-
ing, distribution (with or without modification), mak-

Appendix D: Licenses 486

ing available to the public, and in some countries other
activities as well.

To “convey” a work means any kind of propagation that
enables other parties to make or receive copies. Mere
interaction with a user through a computer network,
with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Le-
gal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an ap-
propriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the ex-
tent that warranties are provided), that licensees may
convey the work under this License, and how to view a
copy of this License. If the interface presents a list of
user commands or options, such as a menu, a prominent
item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form
of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either
is an official standard defined by a recognized standards
body, or, in the case of interfaces specified for a partic-
ular programming language, one that is widely used
among developers working in that language.

The “System Libraries” of an executable work include
anything, other than the work as a whole, that (a) is in-
cluded in the normal form of packaging a Major Compo-
nent, but which is not part of that Major Component,
and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Inter-

Appendix D: Licenses 487

face for which an implementation is available to the
public in source code form. A “Major Component”, in
this context, means a major essential component (ker-
nel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or
a compiler used to produce the work, or an object code
interpreter used to run it.

The “Corresponding Source” for a work in object code
form means all the source code needed to generate, in-
stall, and (for an executable work) run the object code
and to modify the work, including scripts to control
those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in
performing those activities but which are not part of
the work. For example, Corresponding Source includes
interface definition files associated with source files for
the work, and the source code for shared libraries and
dynamically linked subprograms that the work is specif-
ically designed to require, such as by intimate data com-
munication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything
that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for
the term of copyright on the Program, and are irre-
vocable provided the stated conditions are met. This

Appendix D: Licenses 488

License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running
a covered work is covered by this License only if the out-
put, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other
equivalent, as provided by copyright law.

You may make, run and propagate covered works that
you do not convey, without conditions so long as your
license otherwise remains in force. You may convey cov-
ered works to others for the sole purpose of having them
make modifications exclusively for you, or provide you
with facilities for running those works, provided that
you comply with the terms of this License in convey-
ing all material for which you do not control copyright.
Those thus making or running the covered works for
you must do so exclusively on your behalf, under your
direction and control, on terms that prohibit them from
making any copies of your copyrighted material outside
their relationship with you.

Conveying under any other circumstances is permitted
solely under the conditions stated below. Sublicensing
is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-
Circumvention Law.

No covered work shall be deemed part of an effective
technological measure under any applicable law fulfill-
ing obligations under article 11 of the WIPO copyright
treaty adopted on 20 December 1996, or similar laws
prohibiting or restricting circumvention of such mea-
sures.

Appendix D: Licenses 489

When you convey a covered work, you waive any le-
gal power to forbid circumvention of technological mea-
sures to the extent such circumvention is effected by
exercising rights under this License with respect to the
covered work, and you disclaim any intention to limit
operation or modification of the work as a means of
enforcing, against the work’s users, your or third par-
ties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice; keep
intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the
modifications to produce it from the Program, in the
form of source code under the terms of section 4, pro-
vided that you also meet all of these conditions:

a. The work must carry prominent notices stating that
you modified it, and giving a relevant date.

b. The work must carry prominent notices stating that
it is released under this License and any conditions

Appendix D: Licenses 490

added under section 7. This requirement modifies
the requirement in section 4 to “keep intact all no-
tices”.

c. You must license the entire work, as a whole, under
this License to anyone who comes into possession
of a copy. This License will therefore apply, along
with any applicable section 7 additional terms, to
the whole of the work, and all its parts, regardless
of how they are packaged. This License gives no
permission to license the work in any other way, but
it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other separate
and independent works, which are not by their nature
extensions of the covered work, and which are not com-
bined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is
called an “aggregate” if the compilation and its result-
ing copyright are not used to limit the access or legal
rights of the compilation’s users beyond what the indi-
vidual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the
other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form un-
der the terms of sections 4 and 5, provided that you also

Appendix D: Licenses 491

convey the machine-readable Corresponding Source un-
der the terms of this License, in one of these ways:

a. Convey the object code in, or embodied in, a
physical product (including a physical distribution
medium), accompanied by the Corresponding
Source fixed on a durable physical medium
customarily used for software interchange.

b. Convey the object code in, or embodied in, a
physical product (including a physical distribution
medium), accompanied by a written offer, valid
for at least three years and valid for as long as
you offer spare parts or customer support for that
product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding
Source for all the software in the product that
is covered by this License, on a durable physical
medium customarily used for software interchange,
for a price no more than your reasonable cost of
physically performing this conveying of source, or
(2) access to copy the Corresponding Source from a
network server at no charge.

c. Convey individual copies of the object code with a
copy of the written offer to provide the Correspond-
ing Source. This alternative is allowed only occa-
sionally and noncommercially, and only if you re-
ceived the object code with such an offer, in accord
with subsection 6b.

d. Convey the object code by offering access from a
designated place (gratis or for a charge), and of-
fer equivalent access to the Corresponding Source
in the same way through the same place at no fur-
ther charge. You need not require recipients to

Appendix D: Licenses 492

copy the Corresponding Source along with the ob-
ject code. If the place to copy the object code is
a network server, the Corresponding Source may be
on a different server (operated by you or a third
party) that supports equivalent copying facilities,
provided you maintain clear directions next to the
object code saying where to find the Corresponding
Source. Regardless of what server hosts the Cor-
responding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy
these requirements.

e. Convey the object code using peer-to-peer transmis-
sion, provided you inform other peers where the ob-
ject code and Corresponding Source of the work are
being offered to the general public at no charge un-
der subsection 6d.

A separable portion of the object code, whose source
code is excluded from the Corresponding Source as a
System Library, need not be included in conveying the
object code work.

A “User Product” is either (1) a “consumer product”,
which means any tangible personal property which is
normally used for personal, family, or household pur-
poses, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in
favor of coverage. For a particular product received by
a particular user, “normally used” refers to a typical or
common use of that class of product, regardless of the
status of the particular user or of the way in which the
particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product

Appendix D: Licenses 493

regardless of whether the product has substantial com-
mercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the
product.

“Installation Information” for a User Product means
any methods, procedures, authorization keys, or other
information required to install and execute modified
versions of a covered work in that User Product from
a modified version of its Corresponding Source. The
information must suffice to ensure that the continued
functioning of the modified object code is in no case
prevented or interfered with solely because modifica-
tion has been made.

If you convey an object code work under this section
in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in
which the right of possession and use of the User Prod-
uct is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is char-
acterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation
Information. But this requirement does not apply if
neither you nor any third party retains the ability to
install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information
does not include a requirement to continue to provide
support service, warranty, or updates for a work that
has been modified or installed by the recipient, or for
the User Product in which it has been modified or in-
stalled. Access to a network may be denied when the
modification itself materially and adversely affects the

Appendix D: Licenses 494

operation of the network or violates the rules and pro-
tocols for communication across the network.

Corresponding Source conveyed, and Installation Infor-
mation provided, in accord with this section must be
in a format that is publicly documented (and with an
implementation available to the public in source code
form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement
the terms of this License by making exceptions from one
or more of its conditions. Additional permissions that
are applicable to the entire Program shall be treated
as though they were included in this License, to the
extent that they are valid under applicable law. If ad-
ditional permissions apply only to part of the Program,
that part may be used separately under those permis-
sions, but the entire Program remains governed by this
License without regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions from
that copy, or from any part of it. (Additional permis-
sions may be written to require their own removal in
certain cases when you modify the work.) You may
place additional permissions on material, added by you
to a covered work, for which you have or can give ap-
propriate copyright permission.

Notwithstanding any other provision of this License,
for material you add to a covered work, you may (if
authorized by the copyright holders of that material)
supplement the terms of this License with terms:

Appendix D: Licenses 495

a. Disclaiming warranty or limiting liability differently
from the terms of sections 15 and 16 of this License;
or

b. Requiring preservation of specified reasonable legal
notices or author attributions in that material or in
the Appropriate Legal Notices displayed by works
containing it; or

c. Prohibiting misrepresentation of the origin of that
material, or requiring that modified versions of such
material be marked in reasonable ways as different
from the original version; or

d. Limiting the use for publicity purposes of names of
licensors or authors of the material; or

e. Declining to grant rights under trademark law for
use of some trade names, trademarks, or service
marks; or

f. Requiring indemnification of licensors and authors
of that material by anyone who conveys the ma-
terial (or modified versions of it) with contractual
assumptions of liability to the recipient, for any li-
ability that these contractual assumptions directly
impose on those licensors and authors.

All other non-permissive additional terms are consid-
ered “further restrictions” within the meaning of sec-
tion 10. If the Program as you received it, or any part
of it, contains a notice stating that it is governed by
this License along with a term that is a further restric-
tion, you may remove that term. If a license document
contains a further restriction but permits relicensing or
conveying under this License, you may add to a cov-
ered work material governed by the terms of that li-

Appendix D: Licenses 496

cense document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this
section, you must place, in the relevant source files, a
statement of the additional terms that apply to those
files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may
be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply
either way.

8. Termination.

You may not propagate or modify a covered work ex-
cept as expressly provided under this License. Any at-
tempt otherwise to propagate or modify it is void, and
will automatically terminate your rights under this Li-
cense (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then
your license from a particular copyright holder is rein-
stated (a) provisionally, unless and until the copyright
holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means,
this is the first time you have received notice of viola-
tion of this License (for any work) from that copyright

Appendix D: Licenses 497

holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not
terminate the licenses of parties who have received
copies or rights from you under this License. If your
rights have been terminated and not permanently re-
instated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to
receive or run a copy of the Program. Ancillary prop-
agation of a covered work occurring solely as a conse-
quence of using peer-to-peer transmission to receive a
copy likewise does not require acceptance. However,
nothing other than this License grants you permission
to propagate or modify any covered work. These ac-
tions infringe copyright if you do not accept this Li-
cense. Therefore, by modifying or propagating a cov-
ered work, you indicate your acceptance of this License
to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original licen-
sors, to run, modify and propagate that work, subject
to this License. You are not responsible for enforcing
compliance by third parties with this License.

An “entity transaction” is a transaction transferring
control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organi-
zations. If propagation of a covered work results from
an entity transaction, each party to that transaction

Appendix D: Licenses 498

who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a
right to possession of the Corresponding Source of the
work from the predecessor in interest, if the predecessor
has it or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this Li-
cense. For example, you may not impose a license fee,
royalty, or other charge for exercise of rights granted
under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit)
alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Pro-
gram or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes
use under this License of the Program or a work on
which the Program is based. The work thus licensed is
called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent
claims owned or controlled by the contributor, whether
already acquired or hereafter acquired, that would be
infringed by some manner, permitted by this License,
of making, using, or selling its contributor version, but
do not include claims that would be infringed only as
a consequence of further modification of the contribu-
tor version. For purposes of this definition, “control”
includes the right to grant patent sublicenses in a man-
ner consistent with the requirements of this License.

Appendix D: Licenses 499

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the
contents of its contributor version.

In the following three paragraphs, a “patent license”
is any express agreement or commitment, however de-
nominated, not to enforce a patent (such as an express
permission to practice a patent or covenant not to sue
for patent infringement). To “grant” such a patent li-
cense to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a
patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge
and under the terms of this License, through a pub-
licly available network server or other readily accessi-
ble means, then you must either (1) cause the Corre-
sponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for
this particular work, or (3) arrange, in a manner con-
sistent with the requirements of this License, to extend
the patent license to downstream recipients. “Know-
ingly relying” means you have actual knowledge that,
but for the patent license, your conveying the covered
work in a country, or your recipient’s use of the covered
work in a country, would infringe one or more identi-
fiable patents in that country that you have reason to
believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a

Appendix D: Licenses 500

patent license to some of the parties receiving the cov-
ered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to
all recipients of the covered work and works based on
it.

A patent license is “discriminatory” if it does not in-
clude within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one
or more of the rights that are specifically granted under
this License. You may not convey a covered work if you
are a party to an arrangement with a third party that
is in the business of distributing software, under which
you make payment to the third party based on the ex-
tent of your activity of conveying the work, and under
which the third party grants, to any of the parties who
would receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from
those copies), or (b) primarily for and in connection
with specific products or compilations that contain the
covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March
2007.

Nothing in this License shall be construed as exclud-
ing or limiting any implied license or other defenses to
infringement that may otherwise be available to you
under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court or-
der, agreement or otherwise) that contradict the con-
ditions of this License, they do not excuse you from

Appendix D: Licenses 501

the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obli-
gations under this License and any other pertinent obli-
gations, then as a consequence you may not convey it at
all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to
whom you convey the Program, the only way you could
satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License,
you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU
Affero General Public License into a single combined
work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is
the covered work, but the special requirements of the
GNU Affero General Public License, section 13, con-
cerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number.
If the Program specifies that a certain numbered ver-
sion of the GNU General Public License “or any later
version” applies to it, you have the option of follow-
ing the terms and conditions either of that numbered

Appendix D: Licenses 502

version or of any later version published by the Free
Software Foundation. If the Program does not specify
a version number of the GNU General Public License,
you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which
future versions of the GNU General Public License can
be used, that proxy’s public statement of acceptance
of a version permanently authorizes you to choose that
version for the Program.

Later license versions may give you additional or differ-
ent permissions. However, no additional obligations are
imposed on any author or copyright holder as a result
of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM,
TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

Appendix D: Licenses 503

IN NO EVENT UNLESS REQUIRED BY APPLICA-
BLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability
provided above cannot be given local legal effect accord-
ing to their terms, reviewing courts shall apply local law
that most closely approximates an absolute waiver of all
civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy
of the Program in return for a fee.

END OF TERMS AND
CONDITIONS

Appendix D: Licenses 504

How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of
the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program.
It is safest to attach them to the start of each source file to
most effectively state the exclusion of warranty; and each
file should have at least the “copyright” line and a pointer
to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/

licenses/.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it out-
put a short notice like this when it starts in an interactive
mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Appendix D: Licenses 505

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General Public
License. Of course, your program’s commands might be
different; for a GUI interface, you would use an “about
box”.

You should also get your employer (if you work as a
programmer) or school, if any, to sign a “copyright dis-
claimer” for the program, if necessary. For more informa-
tion on this, and how to apply and follow the GNU GPL,
see http://www.gnu.org/licenses/.

The GNU General Public License does not permit in-
corporating your program into proprietary programs. If
your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License.
But first, please read http://www.gnu.org/philosophy/

why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

506

Word Index

This index is a list of Forth words that have “glossary”
entries within this manual. Each word is listed with its
stack effect and wordset.

!
!!FIXME!!(--)

unknown 335
!(w a-addr --) core 121
!@(u1 a-addr -- u2)

gforth-experimental 345

#
#!(--) gforth 440
#(ud1 -- ud2) core 241
#>(xd -- addr u) core . . 242
#>>(--) gforth 242
#loc(nline nchar "file"

--) unknown 336
#s(ud -- 0 0) core 241
#tib(-- addr)

core-ext-obsolescent . . . 198

$
$!(addr1 u $addr --)

gforth-string 250
$!len(u $addr --)

gforth-string 250
$+!(addr1 u $addr --)

gforth-string 251
$+!len(u $addr -- addr

) unknown 250
$.(addr --) unknown 252
$?(-- n) gforth 384

$[]!(addr u n $[]addr
--) gforth 252

$[]#(addr -- len

) gforth 252
$[](u $[]addr -- addr’

) unknown 252
$[]+!(addr u n $[]addr
--) gforth 252

$[].(addr --)

unknown 253
$[]@(n $[]addr -- addr

u) gforth 252
$[]boot(addr --

) unknown 253
$[]free(addr --

) unknown 253
$[]map(addr xt --

) unknown 252
$[]save(addr --

) unknown 253
$[]saved(addr --

) unknown 253
$[]slurp(fid addr --

) unknown 252
$[]slurp-file(addr u $addr
--) unknown 252

$[]Variable(--)

unknown 253
$@($addr -- addr2 u)

gforth-string 250
$@len($addr -- u)

gforth-string 250

Word Index 507

$boot($addr --)

unknown 253
$del(addr off u --)

gforth-string 250
$exec(xt addr --

) unknown 251
$free($addr --)

gforth-string 251
$init($addr --)

unknown 251
$ins(addr1 u $addr off --)

gforth-string 251
$iter(.. $addr char xt -- ..

) gforth-string 251
$over(addr u $addr off

--) unknown 251
$save($addr --)

unknown 253
$saved(addr --)

unknown 253
$slurp(fid addr --

) unknown 252
$slurp-file(addr1 u1 addr2

--) unknown 252
$split(addr u char -- addr1

u1 addr2 u2)

gforth-string 251
$tmp(xt -- addr u

) unknown 251
$Variable(--)

unknown 253

%
%align(align size --

) gforth 291
%alignment(align size --

align) gforth 291
%alloc(align size --

addr) gforth 291

%allocate(align size --

addr ior) gforth 291
%allot(align size --

addr) gforth 291
%size(align size --

size) gforth 292

’
’("name" -- xt) core . . 181,

318
’cold(--) gforth 441
’s(user task -- user’)

gforth-experimental 344

(
(((compilation

’ccc<close-paren>’ -- ;

run-time --)

core,file 94
(local)(addr u --

) local 284

)
)(--) gforth 337

Word Index 508

*
*(n1 n2 -- n) core 96
*/((n1 n2 n3 --

n4) core 100
*/f(n1 n2 n3 -- n4

) gforth 100
*/mod(n1 n2 n3 -- n4

n5) core 100
*/modf(n1 n2 n3 -- n4

n5) gforth 100
*/mods(n1 n2 n3 -- n4

n5) gforth 100
*/s(n1 n2 n3 -- n4

) gforth 100

+
+!(n a-addr --) core . . . 121
+!@(u1 a-addr -- u2)

gforth-experimental 345
+(n1 n2 -- n) core 96
+DO(compilation -- do-sys ;

run-time n1 n2 -- |

loop-sys) gforth 141
+field(unknown)

unknown 293
+load(i*x n -- j*x

) gforth 236
+LOOP(compilation do-sys --

; run-time loop-sys1 n -- |

loop-sys2) core 142
+ltrace(--) unknown . . . 336
+thru(i*x n1 n2 --

j*x) gforth 236
+TO(value "name" --

) gforth 158
+x/string(xc-addr1 u1 --

xc-addr2 u2) xchar 263

,
,(w --) core 119

–
-(n1 n2 -- n) core 96
-->(--) gforth 236
-DO(compilation -- do-sys ;

run-time n1 n2 -- |

loop-sys) gforth 141
-LOOP(compilation do-sys --

; run-time loop-sys1 u -- |

loop-sys2) gforth 142
-ltrace(unknown

) unknown 336
-rot(w1 w2 w3 -- w3 w1

w2) gforth 114
-trailing(c_addr u1 --

c_addr u2) string 128
-trailing-garbage(xc-addr

u1 -- xc-addr u2)

xchar-ext 264

.

."(compilation ’ccc"’ -- ;

run-time --) core 246
.(n --) core 237
.((

compilation&interpretation

"ccc<paren>" --)

core-ext 246
...(unknown) varargs . . 332
.\"(compilation ’ccc"’ -- ;

run-time --) gforth . . . 246
.cover-raw(--)

gforth-exp 341
.coverage(--)

gforth-exp 340

Word Index 509

.debugline(nfile nline

--) gforth 334
.id(nt --) F83 186
.name(nt --)

gforth-obsolete 186
.path(path-addr --

) gforth 229
.r(n1 n2 --) core-ext . . 237
.s(--) tools 332

/
/(n1 n2 -- n) core 99
/does-handler(-- n

) gforth 382
/f(n1 n2 -- n) gforth . . . 99
/f-stage1m(n addr-reci

--) gforth 103
/f-stage2m(n1 a-reci --

nquotient) gforth 103
/l(-- u) gforth 126
/mod(n1 n2 -- n3

n4) core 99
/modf(n1 n2 -- n3 n4

) gforth 99
/modf-stage2m(n1 a-reci --

umodulus nquotient)

gforth 103
/mods(n1 n2 -- n3 n4

) gforth 99
/s(n1 n2 -- n) gforth . . . 99
/string(c-addr1 u1 n --

c-addr2 u2) string 128
/w(-- u) gforth 126

:
:("name" --

colon-sys) core . . . 158, 318
::("name" --) oof . . 318, 321
:}d(hmaddr u latest

latestnt wid 0 a-addr1 u1

... --) gforth 281
:}h(hmaddr u latest

latestnt wid 0 a-addr1 u1

... --) gforth 281
:}l(hmaddr u latest

latestnt wid 0 a-addr1 u1

... --) gforth 281
:m("name" -- xt; run-time:

object --) objects 313
:noname(-- xt colon-sys

) core-ext 159

;
;(compilation colon-sys --

; run-time nest-sys)

core . 158
;>(--)

gforth-experimental 282
;](compile-time: quotation-

sys -- ; run-time: -- xt)

gforth 160
;code(compilation.

colon-sys1 -- colon-sys2)

tools-ext 361
;m(colon-sys --; run-time:

--) objects 313
;s(R:w --) gforth 146

Word Index 510

<
<#(--) core 241
<(n1 n2 -- f) core 108
<<#(--) gforth 241
<=(n1 n2 -- f) gforth . . 108
<>(n1 n2 -- f)

core-ext 108
<{:(-- hmaddr u latest

latestnt wid 0)

gforth-experimental 282
<bind>(class selector-xt --

xt) objects 310
<event(--)

gforth-experimental 346
<to-inst>(w xt --

) objects 314

=
=(n1 n2 -- f) core 108
=mkdir(c-addr u wmode --

wior) gforth 227

>
>(n1 n2 -- f) core 108
>=(n1 n2 -- f) gforth . . 108
>addr(xt -- addr)

gforth-experimental 281
>body(xt --

a_addr) core 168
>code-address()

unknown 382
>definer(xt --

definer) gforth 383
>does-code(xt --

a_addr) gforth 382
>float(c-addr u -- f:...

flag) float 260

>float1(c-addr u c -- f:...

flag) gforth 260
>in(-- addr) core 197
>l(w --) gforth 277
>name(xt -- nt|0

) gforth 185
>number(ud1 c-addr1 u1 --

ud2 c-addr2 u2) core . . 259
>order(wid --

) gforth 212
>r(w -- R:w) core 115

?
?!@(unew uold a-addr --

uprev)

gforth-experimental 345
?(a-addr --) tools 332
???(--) unknown 335
?DO(compilation -- do-sys ;

run-time w1 w2 -- |

loop-sys) core-ext 141
?dup(w -- S:...

w) core 114
?dup-IF(compilation -- orig

; run-time n -- n|)

gforth 141
?DUP-0=-IF(compilation --

orig ; run-time n -- n|)

gforth 141
?events(--)

gforth-experimental 346
?LEAVE(compilation -- ;

run-time f | f loop-sys --

) gforth 142
?of(compilation -- of-sys ;

run-time f --)

gforth 143

Word Index 511

[
[’](compilation. "name" --

; run-time. -- xt)

core . 182
[(--) core 187
[+LOOP](n --) gforth . . . 206
[:(compile-time: --

quotation-sys flag

colon-sys) gforth 160
[?DO](n-limit n-index

--) gforth 205
[](n "name" --) oof 318
[{:(-- hmaddr u latest

latestnt wid 0)

gforth-experimental 280
[AGAIN](--) gforth 206
[BEGIN](--) gforth 206
[bind](compile-time:

"class" "selector" -- ;

run-time: ... object -- ...

) objects 310
[char](compilation

’<spaces>ccc’ -- ; run-time

-- c) core 248
[COMP’](compilation "name"

-- ; run-time -- w xt)

gforth 184
[current](compile-time:

"selector" -- ; run-time:

... object -- ...)

objects 311
[DO](n-limit n-index

--) gforth 205
[ELSE](--) tools-ext . . 205
[ENDIF](--) gforth 205
[FOR](n --) gforth 205
[IF](flag --)

tools-ext 204
[IFDEF]("<spaces>name"

--) gforth 205

[IFUNDEF]("<spaces>name"

--) gforth 205
[LOOP](--) gforth 205
[NEXT](n --) gforth 206
[parent](compile-time:

"selector" -- ; run-time:

... object -- ...)

objects 313
[REPEAT](--) gforth . . . 206
[THEN](--) tools-ext . . 205
[to-inst](compile-time:

"name" -- ; run-time: w --

) objects 314
[UNTIL](flag --

) gforth 206
[WHILE](flag --

) gforth 206

]
](--) core 187
]](--) gforth 190
]L(compilation: n -- ; run-

time: -- n) gforth 187

@
@(a-addr -- w) core 121
@local#(#noffset --

w) gforth 276

Word Index 512

\
\(compilation

’ccc<newline>’ -- ;

run-time --)

core-ext,block-ext 94
\c("rest-of-line"

--) gforth 351
\G(compilation

’ccc<newline>’ -- ;

run-time --) gforth 95

{
{:(-- hmaddr u latest

latestnt wid 0)

forth-2012 284

~
~~(--) gforth 334
~~1bt(--) unknown 335
~~bt(--) unknown 335
~~Value(n "name" --

) unknown 335
~~Variable("name" --

) unknown 335

0
0<(n -- f) core 108
0<=(n -- f) gforth 108
0<>(n -- f) core-ext . . . 108
0=(n -- f) core 108
0>(n -- f) core-ext 108
0>=(n -- f) gforth 108

1
1+(n1 -- n2) core 96
1-(n1 -- n2) core 96
1/f(r1 -- r2) gforth . . . 111

2
2!(w1 w2 a-addr

--) core 122
2*(n1 -- n2) core 106
2,(w1 w2 --) gforth 119
2/(n1 -- n2) core 106
2>r(w1 w2 -- R:w1 R:w2

) core-ext 116
2@(a-addr -- w1

w2) core 121
2Constant(w1 w2 "name"

--) double 156
2drop(w1 w2 --) core . . . 114
2dup(w1 w2 -- w1 w2 w1

w2) core 114
2field:(u1 "name" --

u2) gforth 293
2Literal(compilation w1 w2

-- ; run-time -- w1 w2)

double 187
2nip(w1 w2 w3 w4 -- w3

w4) gforth 114
2over(w1 w2 w3 w4 -- w1 w2 w3

w4 w1 w2) core 114
2r>(R:w1 R:w2 -- w1 w2

) core-ext 116
2r@(R:w1 R:w2 -- R:w1 R:w2

w1 w2) core-ext 116
2rdrop(R:w1 R:w2 --

) gforth 116
2rot(w1 w2 w3 w4 w5 w6 -- w3

w4 w5 w6 w1 w2)

double-ext 114

Word Index 513

2swap(w1 w2 w3 w4 -- w3 w4

w1 w2) core 114
2tuck(w1 w2 w3 w4 -- w3 w4 w1

w2 w3 w4) gforth 114
2Variable("name" --

) double 155

A
abi-code("name" --

colon-sys) gforth 361
abort(?? -- ??)

core,exception-ext 152
ABORT"(compilation ’ccc"’

-- ; run-time f --)

core,exception-ext 152
abs(n -- u) core 96
accept(c-addr +n1 --

+n2) core 259
action-of(interpretation

"name" -- xt; compilation

"name" -- ; run-time -- xt

) core-ext 175
activate(task --)

gforth-experimental 343
add-cflags(c-addr u

--) gforth 355
add-incdir(c-addr u

--) gforth 355
add-ldflags(c-addr u

--) gforth 355
add-lib(c-addr u --

) gforth 355
add-libpath(c-addr u

--) gforth 355
addr("name" -- addr

) gforth 158
ADDRESS-UNIT-BITS(-- n)

environment 126

after-locate(-- u

) gforth 329
AGAIN(compilation dest -- ;

run-time --)

core-ext 139
AHEAD(compilation -- orig ;

run-time --)

tools-ext 139
Alias(xt "name" --

) gforth 176
align(--) core 119
aligned(c-addr --

a-addr) core 124
allocate(u -- a_addr

wior) memory 120
allot(n --) core 118
also(--) search-ext . . . 213
also-path(c-addr len

path-addr --) gforth . . 229
and(w1 w2 -- w) core 105
annotate-cov(--)

gforth-exp 340
arg(u -- addr count

) gforth 266
argc(-- addr) gforth . . . 266
argv(-- addr) gforth . . . 266
arshift(n1 u -- n2

) gforth 106
asptr(o "name"

--) oof 318, 319
assembler(--)

tools-ext 360
assert((--) gforth 337
assert-level(--

a-addr) gforth 338
assert0((--) gforth . . . 337
assert1((--) gforth . . . 337
assert2((--) gforth . . . 337
assert3((--) gforth . . . 337
ASSUME-LIVE(orig --

orig) gforth 273

Word Index 514

at-xy(x y --) unknown . . 254
attr!(attr --

) gforth 254
authors(--) unknown 11

B
b(--) gforth 328
barrier(--)

gforth-experimental 345
base(-- a-addr) core . . . 201
base-execute(i*x xt u --

j*x) gforth 201
before-locate(-- u

) gforth 329
begin-structure("name" --

struct-sys 0)

X:structures 293
BEGIN(compilation -- dest ;

run-time --) core 139
bin(fam1 --

fam2) file 223
bind’("class" "selector" --

xt) objects 310
bind(... "class" "selector"

-- ...) objects . . . 310, 318
bl(-- c-char) core 245
blank(c-addr u --

) string 127
blk(-- addr) block 198
block(u -- a-addr

) block 234
block-included(a-addr u

--) gforth 236
block-offset(--

addr) gforth 234
block-position(u

--) block 234
bootmessage(--

) gforth 442

bound(class addr

"name" --) oof 318
bounds(addr u -- addr+u

addr) gforth 128
break"(’ccc"’ --

) gforth 340
break:(--) gforth 340
broken-pipe-error(--

n) gforth 261
bt(--) gforth 331
buffer(u --

a-addr) block 235
bw(--) gforth 330
bw-cover(--) unknown . . 341
bye(--) unknown 10

C
c!(c c-addr --) core . . . 121
c$+!(char $addr --)

gforth-string 251
c,(c --) core 119
c-callback("forth-name"

"{type}" "---" "type" --)

gforth 356
c-function("forth-name"

"c-name" "{type}" "---"

"type" --) gforth 351
c-funptr("forth-name"

<{>"c-typecast"<}>

"{type}" "---" "type" --)

gforth 352
c-library("name" --

) gforth 354
c-library-name(c-addr u

--) gforth 354
c-value("forth-name"

"c-name" "---" "type" --)

gforth 351

Word Index 515

c-variable("forth-name"

"c-name" --) gforth . . . 351
c@(c-addr -- c) core . . . 121
C"(compilation "ccc<quote>"

-- ; run-time -- c-addr)

core-ext 248
call-c(... w -- ...

) gforth 357
case(compilation --

case-sys ; run-time --)

core-ext 143
catch(... xt -- ... n

) exception 148
cell%(-- align size

) gforth 291
cell(-- u) gforth 124
cell+(a-addr1 --

a-addr2) core 124
cell-(a-addr1 --

a-addr2) core 124
cell/(n1 -- n2

) gforth 124
cells(n1 -- n2) core . . . 124
cfalign(--) gforth 120
cfaligned(addr1 --

addr2) gforth 125
cfield:(u1 "name" -- u2)

X:structures 293
char%(-- align size

) gforth 291
char(’<spaces>ccc’

-- c) core 248
char+(c-addr1 --

c-addr2) core 124
chars(n1 -- n2) core . . . 124
class(parent-class -- align

offset)

objects 310, 317, 320
class->map(class --

map) objects 310

class-inst-size(class --

addr) objects 310
class-override!(xt sel-xt

class-map --)

objects 310
class-previous(class

--) objects 310
class;(--) oof 320
class>order(class --

) objects 311
class?(o -- flag) oof . . 317
clear-libs(--

) gforth 355
clear-path(path-addr

--) gforth 229
clearstack(... --

) gforth 332
clearstacks(... --

) gforth 332
close-dir(wdirid --

wior) gforth 227
close-file(wfileid --

wior) file 223
close-pipe(wfileid --

wretval wior) gforth . . 261
cmove(c-from c-to u

--) string 126
cmove>(c-from c-to u

--) string 127
code("name" -- colon-sys

) tools-ext 361
code-address!(c_addr xt

--) gforth 382
color-cover(--)

unknown 341
common-list(list1 list2 --

list3) unknown 279
COMP’("name" -- w xt

) gforth 184
compare(c-addr1 u1 c-addr2

u2 -- n) string 127

Word Index 516

compile,(xt --)

unknown 192
compile-lp+!(n --

) gforth 277
compile-only(--

) gforth 178
cond("name" --)

gforth-experimental 347
const-does>(run-time: w*uw

r*ur uw ur "name" --)

gforth 172
Constant(w "name"

--) core 156
construct(... object

--) objects 311
context(-- addr

) gforth 215
contof(compilation

case-sys1 of-sys --

case-sys2 ; run-time --)

gforth 144
convert(ud1 c-addr1 -- ud2

c-addr2)

core-ext-obsolescent . . . 260
count(c-addr1 --

c-addr2 u) core 245
cov%(--) gforth-exp . . . 341
cov+(--) gforth-exp . . . 341
cputime(-- duser

dsystem) gforth 385
cr(--) core 247
Create("name"

--) core 153
create-file(c-addr u wfam

-- wfileid wior)

file . 223
critical-section(xt

semaphore --)

gforth-experimental 345
cs-vocabulary("name"

--) gforth 212

cs-wordlist(-- wid

) gforth 212
CS-DROP(dest --

) gforth 140
CS-PICK(orig0/dest0

orig1/dest1 ...

origu/destu u -- ...

orig0/dest0)

tools-ext 140
CS-ROLL(destu/origu ..

dest0/orig0 u -- ..

dest0/orig0 destu/origu)

tools-ext 140
current’("selector" --

xt) objects 311
current(-- addr

) gforth 215
current-interface(--

addr) objects 311

D
d+(ud1 ud2 -- ud

) double 97
d-(d1 d2 -- d) double . . . 97
d.(d --) double 237
d.r(d n --) double 238
d<(d1 d2 -- f) double . . 109
d<=(d1 d2 -- f

) gforth 109
d<>(d1 d2 -- f

) gforth 109
d=(d1 d2 -- f) double . . 109
d>(d1 d2 -- f) gforth . . 109
d>=(d1 d2 -- f

) gforth 109
d>f(d -- r) float 110
d>s(d -- n) double 97
d0<(d -- f) double 109
d0<=(d -- f) gforth 109

Word Index 517

d0<>(d -- f) gforth 109
d0=(d -- f) double 109
d0>(d -- f) gforth 109
d0>=(d -- f) gforth 109
d2*(d1 -- d2) double . . . 106
d2/(d1 -- d2) double . . . 106
dabs(d -- ud) double 97
darshift(d1 u -- d2

) gforth 106
dbg("name" --

) gforth 340
debug-fid(--

file-id) gforth 335
dec.(n --) gforth 237
decimal(--) core 201
default-color(--

) gforth 254
defer!(xt xt-deferred

--) gforth 175
Defer("name" --

) gforth 175
defer(--) oof 319
defer@(xt-deferred --

xt) gforth 175
defers(compilation "name"

-- ; run-time ... -- ...)

gforth 175
definer!(definer xt

--) gforth 383
defines(xt class "name"

--) mini-oof 321
definitions(--

) search 211, 317
delete(buffer size u --)

gforth-string 250
delete-file(c-addr u --

wior) file 223
Depth(unknown)

unknown 332
df!(r df-addr --)

float-ext 122

df@(df-addr -- r)

float-ext 122

dfalign(--)

float-ext 120

dfaligned(c-addr -- df-addr

) float-ext 125

dffield:(u1 "name" -- u2)

X:structures 293

dfloat%(-- align

size) gforth 291

dfloat+(df-addr1 --

df-addr2) float-ext . . . 125

dfloats(n1 -- n2)

float-ext 125

dict-new(... class --

object) objects 311

discode(addr u --

) gforth 365

dispose(--) oof 317

dlshift(ud1 u -- ud2

) gforth 106

dmax(d1 d2 -- d

) double 97

dmin(d1 d2 -- d

) double 97

dnegate(d1 -- d2

) double 97

DO(compilation -- do-sys ;

run-time w1 w2 -- loop-sys

) core 142

docol:(-- addr

) gforth 383

docon:(-- addr

) gforth 383

dodefer:(-- addr

) gforth 383

does-code!(xt1 xt2

--) gforth 382

Word Index 518

DOES>(compilation

colon-sys1 -- colon-sys2)

unknown 167
dofield:(-- addr

) gforth 383
DONE(compilation orig -- ;

run-time --) gforth . . . 142
double%(-- align

size) gforth 291
douser:(-- addr

) gforth 383
dovar:(-- addr

) gforth 383
dpl(-- a-addr

) gforth 201
drol(ud1 u -- ud2

) gforth 107
drop(w --) core 114
dror(ud1 u -- ud2

) gforth 107
drshift(ud1 u -- ud2

) gforth 106
du/mod(d u -- n u1

) gforth 100
du<(ud1 ud2 -- f)

double-ext 109
du<=(ud1 ud2 -- f

) gforth 109
du>(ud1 ud2 -- f

) gforth 109
du>=(ud1 ud2 -- f

) gforth 109
dump(addr u --)

unknown 333
dup(w -- w w) core 114

E
e$,(addr u --)

gforth-experimental 346
early(--) oof 319
edit("name" --

) gforth 329, 336
edit-line(c-addr n1 n2 --

n3) gforth 259
eflit,(x --)

gforth-experimental 346
ekey(-- u)

facility-ext 256
ekey>char(u -- u false | c

true) facility-ext 256
ekey>fkey(u1 -- u2 f

) X:ekeys 256
ekey?(-- flag)

facility-ext 256
elit,(x --)

gforth-experimental 346
ELSE(compilation orig1 --

orig2 ; run-time --)

core . 140
emit(c --) core 246
emit-file(c wfileid --

wior) gforth 224
empty-buffer(buffer

--) gforth 235
empty-buffers(--)

block-ext 235
end-c-library(--

) gforth 354
end-class(align offset

"name" --)

objects 311, 320
end-class-noname(align

offset -- class)

objects 311
end-code(colon-sys

--) gforth 361

Word Index 519

end-interface("name"

--) objects 311
end-interface-noname(--

interface) objects 311
end-methods(--)

objects 312
end-struct(align size

"name" --) gforth 291
end-structure(struct-sys +n

--) X:structures 293
endcase(compilation

case-sys -- ; run-time x --

) core-ext 143
ENDIF(compilation orig -- ;

run-time --) gforth . . . 141
endof(compilation case-sys1

of-sys -- case-sys2 ; run-

time --) core-ext 143
endscope(compilation scope

-- ; run-time --)

gforth 269
endtry(compilation -- ;

run-time R:sys1 --)

gforth 149
endtry-iferror(compilation

orig1 -- orig2 ; run-time

R:sys1 --) gforth 151
endwith(--) oof 319
environment-wordlist(--

wid) gforth 218
environment?(c-addr u --

false / ... true)

core . 218
erase(addr u --)

core-ext 126
error-color(--

) gforth 254
evaluate(... addr u -- ...

) core,block 199
event-loop(--)

gforth-experimental 346

event:("name" --)

gforth-experimental 346
event>(task --)

gforth-experimental 346
exception(addr u --

n) gforth 147
execute(xt --) core 183
execute-parsing(... addr u

xt -- ...) gforth 210
execute-parsing-file(i*x

fileid xt -- j*x)

gforth 210
execute-task(xt -- task)

gforth-experimental 342
EXIT(compilation -- ;

run-time nest-sys --)

core . 146
exitm(--) objects 312
expect(c-addr +n --)

core-ext-obsolescent . . . 260

F
f!(r f-addr --) float . . 122
f*(r1 r2 -- r3) float . . 110
f**(r1 r2 -- r3)

float-ext 111
f+(r1 r2 -- r3) float . . 110
f,(f --) gforth 119
f-(r1 r2 -- r3) float . . 110
f.(r --) float-ext 238
f.rdp(rf +nr +nd +np

--) gforth 239
f.s(--) gforth 332
f/(r1 r2 -- r3) float . . 110
f<(r1 r2 -- f) float 113
f<=(r1 r2 -- f

) gforth 113
f<>(r1 r2 -- f

) gforth 113

Word Index 520

f=(r1 r2 -- f) gforth . . 113
f>(r1 r2 -- f) gforth . . 113
f>=(r1 r2 -- f

) gforth 113
f>buf-rdp(rf c-addr +nr +nd

+np --) gforth 242
f>d(r -- d) float 110
f>l(r --) gforth 277
f>s(r -- n) float 110
f>str-rdp(rf +nr +nd +np --

c-addr nr) gforth 242
f@(f-addr -- r) float . . 122
f@local#(#noffset --

r) gforth 276
f~(r1 r2 r3 -- flag)

float-ext 113
f~abs(r1 r2 r3 --

flag) gforth 112
f~rel(r1 r2 r3 --

flag) gforth 112
f0<(r -- f) float 113
f0<=(r -- f) gforth 113
f0<>(r -- f) gforth 113
f0=(r -- f) float 113
f0>(r -- f) gforth 113
f0>=(r -- f) gforth 113
f2*(r1 -- r2) gforth . . . 111
f2/(r1 -- r2) gforth . . . 111
fabs(r1 -- r2)

float-ext 110
facos(r1 -- r2)

float-ext 112
facosh(r1 -- r2)

float-ext 112
falign(--) float 119
faligned(c-addr --

f-addr) float 125
falog(r1 -- r2)

float-ext 111
False(unknown)

unknown 95

fasin(r1 -- r2)

float-ext 112
fasinh(r1 -- r2)

float-ext 112
fatan(r1 -- r2)

float-ext 112
fatan2(r1 r2 -- r3)

float-ext 112
fatanh(r1 -- r2)

float-ext 112
fconstant(r "name"

--) float 156
fcos(r1 -- r2)

float-ext 111
fcosh(r1 -- r2)

float-ext 112
fdepth(-- +n) float 332
fdrop(r --) float 115
fdup(r -- r r) float 115
fe.(r --) float-ext 238
fexp(r1 -- r2)

float-ext 111
fexpm1(r1 -- r2)

float-ext 111
ffield:(u1 "name" -- u2)

X:structures 293
ffourth(r1 r2 r3 r4 -- r1 r2

r3 r4 r1) gforth 115
field(align1 offset1 align

size "name" -- align2

offset2) gforth 291
field:(u1 "name" -- u2)

X:structures 293
file-position(wfileid --

ud wior) file 225
file-size(wfileid -- ud

wior) file 225
file-status(c-addr u --

wfam wior) file-ext . . . 225

Word Index 521

filename-match(c-addr1 u1

c-addr2 u2 -- flag)

gforth 227
fill(c-addr u c

--) core 127
find(c-addr -- xt +-1 | c-

addr 0) core,search . . . 213
find-name(c-addr u -- nt

| 0) gforth 184
find-name-in(c-addr u wid

-- nt | 0) unknown 185
fkey.(u --) gforth 258
FLiteral(compilation r -- ;

run-time -- r) float . . 188
fln(r1 -- r2)

float-ext 111
flnp1(r1 -- r2)

float-ext 111
float%(-- align size

) gforth 292
float(-- u) gforth 125
float+(f-addr1 --

f-addr2) float 124
floating-stack(-- n)

environment 115
floats(n1 -- n2

) float 124
flog(r1 -- r2)

float-ext 111
floor(r1 -- r2) float . . 110
FLOORED(-- f)

environment 101
flush(--) block 235
flush-file(wfileid --

wior) file-ext 225
flush-icache(c-addr u

--) gforth 361
fm/mod(d1 n1 -- n2

n3) core 99
fmax(r1 r2 -- r3

) float 110

fmin(r1 r2 -- r3

) float 110
fnegate(r1 -- r2

) float 110
fnip(r1 r2 -- r2

) gforth 115
FOR(compilation -- do-sys ;

run-time u -- loop-sys)

gforth 142
form() unknown 254
Forth(--) search-ext . . 213
forth-recognize(

) unknown 208
forth-wordlist(--

wid) search 211
fourth(w1 w2 w3 w4 -- w1 w2

w3 w4 w1) gforth 114
fover(r1 r2 -- r1 r2

r1) float 115
fp!(f-addr -- f:...

) gforth 116
fp.(r --) float-ext 238
fp@(f:... -- f-addr

) gforth 116
fp0(-- a-addr

) gforth 116
fpath(-- path-addr

) gforth 229
fpick(f:... u -- f:...

r) gforth 115
free(a_addr -- wior

) memory 121
frot(r1 r2 r3 -- r2 r3

r1) float 115
fround(r1 -- r2

) float 110
fs.(r --) gforth 238
fsin(r1 -- r2)

float-ext 111

Word Index 522

fsincos(r1 -- r2 r3)

float-ext 111
fsinh(r1 -- r2)

float-ext 112
fsqrt(r1 -- r2)

float-ext 111
fswap(r1 r2 -- r2

r1) float 115
ftan(r1 -- r2)

float-ext 112
ftanh(r1 -- r2)

float-ext 112
fthird(r1 r2 r3 -- r1 r2 r3

r1) gforth 115
ftuck(r1 r2 -- r2 r1

r2) gforth 115
fvariable("name"

--) float 155

G
g(--) gforth 328
get-block-fid(--

wfileid) gforth 234
get-current(-- wid

) search 211
get-dir(c-addr1 u1 --

c-addr2 u2) gforth 227
get-order(-- widn ..

wid1 n) search 212
get-recognizers(-- xt1 ..

xtn n) unknown 208
getenv(c-addr1 u1 --

c-addr2 u2) gforth 384
gforth(-- c-addr u)

gforth-environment 219
gg(--) gforth 330

H
halt(task --)

gforth-experimental 343
heap-new(... class --

object) objects 312
help("rest-of-line"

--) gforth 10, 329
here(-- addr) core 118
hex(--) core-ext 201
hex.(u --) gforth 237
hold(char --) core 242
how:(--) oof 320

I
i(R:n -- R:n n) core 132
id.(nt --) gforth 186
IF(compilation -- orig ;

run-time f --) core 139
iferror(compilation orig1

-- orig2 ; run-time --)

gforth 149
immediate(--) core 178
implementation(interface

--) objects 312
include(... "file" --

...) gforth 222
include-file(i*x wfileid

-- j*x) file 221
included(i*x c-addr u --

j*x) file 221
included?(c-addr u --

f) gforth 222
infile-execute(... xt file-

id -- ...) gforth 226
info-color(--

) gforth 254
init(... --) oof 317
init-asm(--) gforth . . . 360

Word Index 523

init-object(... class

object --) objects 312
initiate(xt task --)

gforth-experimental 343
insert(string length buffer

size --)

gforth-string 250
inst-value(align1 offset1

"name" -- align2 offset2)

objects 312
inst-var(align1 offset1

align size "name" -- align2

offset2) objects 312
interface(--)

objects 312
interpret/compile:(

interp-xt comp-xt "name" --

) gforth 178
invert(w1 -- w2) core . . 105
is(xt "name" --) oof . . . 318
IS(value "name" --

) core-ext 175

J
j(R:w R:w1 R:w2 -- w R:w

R:w1 R:w2) core 132

K
k(R:w R:w1 R:w2 R:w3 R:w4 --

w R:w R:w1 R:w2 R:w3 R:w4)

gforth 132
k-alt-mask(-- u

) X:ekeys 257
k-ctrl-mask(-- u

) X:ekeys 257
k-delete(-- u)

X:ekeys 257
k-down(-- u) X:ekeys . . . 256

k-end(-- u) X:ekeys 256
k-f1(-- u) X:ekeys 257
k-f10(-- u) X:ekeys 257
k-f11(-- u) X:ekeys 257
k-f12(-- u) X:ekeys 257
k-f2(-- u) X:ekeys 257
k-f3(-- u) X:ekeys 257
k-f4(-- u) X:ekeys 257
k-f5(-- u) X:ekeys 257
k-f6(-- u) X:ekeys 257
k-f7(-- u) X:ekeys 257
k-f8(-- u) X:ekeys 257
k-f9(-- u) X:ekeys 257
k-home(-- u) X:ekeys . . . 256
k-insert(-- u)

X:ekeys 257
k-left(-- u) X:ekeys . . . 256
k-next(-- u) X:ekeys . . . 256
k-prior(-- u)

X:ekeys 256
k-right(-- u)

X:ekeys 256
k-shift-mask(-- u

) X:ekeys 257
k-up(-- u) X:ekeys 256
key(-- char) unknown . . . 255
key-file(fd -- key

) unknown 224
key?(-- flag)

facility 255
key?-file(wfileid --

f) gforth 224

Word Index 524

L
l!(w c-addr --

) gforth 123
l(--) unknown 328
laddr#(#noffset --

c-addr) gforth 276
latest(-- nt) gforth . . . 185
latestxt(-- xt

) gforth 159
LEAVE(compilation -- ;

run-time loop-sys --)

core . 142
lib-error(-- c-addr

u) gforth 357
lib-sym(c-addr1 u1 u2 --

u3) gforth 357
license(--) gforth 11
link("name" -- class

addr) oof 318
list(u --) block-ext . . . 234
list-size(list -- u)

gforth-internal 279
Literal(compilation n -- ;

run-time -- n) core 187
ll(--) gforth 330
load(i*x u -- j*x

) block 236
load-cov(--)

gforth-exp 341
locate("name" --

) gforth 328, 336
lock(semaphore --)

gforth-experimental 344
LOOP(compilation do-sys --

; run-time loop-sys1 -- |

loop-sys2) core 142
lp!(c-addr --

) gforth 117, 277
lp+!#(#noffset --

) gforth 276

lp@(-- addr) gforth 117
lp0(-- a-addr

) gforth 116
lrol(u1 u -- u2

) gforth 107
lror(u1 u -- u2

) gforth 107
lshift(u1 u --

u2) core 105

M
m*(n1 n2 -- d) core 97
m*/(d1 n2 u3 --

dquot) double 101
m+(d1 n -- d2) double . . . 97
m:(-- xt colon-sys;

run-time: object --)

objects 312
marker("<spaces> name"

--) core-ext 333
max(n1 n2 -- n) core 96
maxalign(--) gforth . . . 120
maxaligned(addr1 --

addr2) gforth 125
maxdepth-.s(-- addr

) gforth 332
method(xt "name" --

) objects 313, 319, 320
methods(class --

) objects 313
min(n1 n2 -- n) core 96
mkdir-parents(c-addr u mode

-- ior) unknown 227
mod(n1 n2 -- n) core 99
modf(n1 n2 -- n

) gforth 99
modf-stage2m(n1 a-reci --

umodulus) gforth 103

Word Index 525

mods(n1 n2 -- n

) gforth 99
move(c-from c-to

ucount --) core 126
ms(n --) unknown 384
mux(u1 u2 u3 -- u

) gforth 105

N
n(--) gforth 328
naligned(addr1 n --

addr2) gforth 292
name(-- c-addr u)

gforth-obsolete 209
name>comp(nt -- w xt

) gforth 185
name>compile(nt -- w

xt) unknown 185
name>int(nt -- xt

) gforth 185
name>interpret(nt --

xt|0) unknown 185
name>string(nt -- addr

u) gforth 186
name?int(nt -- xt)

gforth-obsolete 185
needs(... "name" --

...) gforth 222
negate(n1 -- n2) core . . . 96
new(-- o) oof 318, 321
new[](n -- o) oof 318
newtask(stacksize -- task)

gforth-experimental 342
newtask4(dsize rsize fsize

lsize -- task)

gforth-experimental 342
next-arg(-- addr u

) gforth 265

next-case(compilation

case-sys -- ; run-time --)

gforth 143
NEXT(compilation do-sys --

; run-time loop-sys1 -- |

loop-sys2) gforth 142
nextname(c-addr u --

) gforth 161
nip(w1 w2 -- w2)

core-ext 114
noname(--) gforth 159
notfound() unknown 206
nothrow(--) gforth 148
nt(--) gforth 331
ntime(-- dtime

) gforth 385
nw(--) gforth 330

O
object(-- class

) objects 313, 320
of(compilation -- of-sys ;

run-time x1 x2 -- |x1)

core-ext 143
off(a-addr --) gforth . . . 95
on(a-addr --) gforth 95
once(--) unknown 335
Only(--) search-ext . . . 213
open-blocks(c-addr u

--) gforth 234
open-dir(c-addr u -- wdirid

wior) gforth 226
open-file(c-addr u wfam --

wfileid wior) file 223
open-lib(c-addr1 u1 --

u2) gforth 357
open-path-file(addr1 u1

path-addr -- wfileid addr2

u2 0 | ior) gforth 229

Word Index 526

open-pipe(c-addr u wfam --

wfileid wior) gforth . . 261
or(w1 w2 -- w) core 105
order(--) search-ext . . 213
os-class(-- c-addr u)

gforth-environment 219
outfile-execute(... xt

file-id -- ...)

gforth 226
over(w1 w2 -- w1 w2

w1) core 114
overrides(xt "selector"

--) objects 313

P
pad(-- c-addr)

core-ext 128
page(--) unknown 254
parse(xchar "ccc<xchar>" --

c-addr u)

core-ext,xchar 209
parse-name("name" --

c-addr u) gforth 209
parse-word(-- c-addr u)

gforth-obsolete 209
pass(x1 .. xn n task --)

gforth-experimental 343
path+(path-addr "dir"

--) gforth 229
path=(path-addr

"dir1|dir2|dir3")

gforth 230
pause(--)

gforth-experimental 343
perform(a-addr --

) gforth 183
pi(-- r) gforth 112
pick(S:... u -- S:... w

) core-ext 114

postpone("name"

--) core 189, 318
postpone,(w xt --

) gforth 184
precision(-- u)

float-ext 239
previous(--)

search-ext 212
print(object --

) objects 313
printdebugdata(--

) gforth 334
protected(--)

objects 313
pthread_cond_broadcast(

cond -- r)

gforth-experimental 347
pthread_cond_signal(cond --

r)

gforth-experimental 347
pthread_cond_timedwait(

cond mutex abstime -- r)

gforth-experimental 347
pthread_cond_wait(cond

mutex -- r)

gforth-experimental 347
ptr("name" --) oof 318,

319
public(--) objects 314

Q
query(--)

core-ext-obsolescent . . . 199
quit(?? -- ??) core 385

Word Index 527

R
r/o(-- fam) file 223
r/w(-- fam) file 223
r>(R:w -- w) core 115
r@(-- w ; R: w --

w) core. 115
rdrop(R:w --) gforth . . . 115
read-dir(c-addr u1 wdirid

-- u2 flag wior)

gforth 226
read-file(c-addr u1 wfileid

-- u2 wior) file 223
read-line(c_addr u1 wfileid

-- u2 flag wior) file . . 224
rec-body(addr u -- xt

recognized-tick |

recognized-null)

unknown 207
rec-dtick(addr u -- nt

rectype-num | rectype-null

) unknown 207
rec-float(addr u -- r

recognized-float |

notfound) unknown 207
rec-nt(addr u -- nt

recognized-nt | notfound)

unknown 207
rec-num(addr u -- n/d table

| notfound) unknown . . . 207
rec-sequence:(x1 .. xn n

"name" --) unknown 208
rec-string(addr u -- addr u’

r:string | rectype-null)

unknown 207
rec-tick(addr u -- xt

rectype-num | rectype-null

) unknown 207
rec-to(addr u -- xt r:to |

rectype-null)

unknown 207

recognize(addr u rec-addr

-- ... rectype)

unknown 208
recurse() unknown 145
recursive(compilation -- ;

run-time --) gforth . . . 145
refill(-- flag)

core-ext,block-ext,file-

ext . 209
rename-file(c-addr1 u1

c-addr2 u2 -- wior)

file-ext 223
REPEAT(compilation orig

dest -- ; run-time --)

core . 140
replace-word(xt1 xt2

--) gforth 335
reposition-file(ud wfileid

-- wior) file 225
represent(r c-addr u -- n

f1 f2) float 242
require(... "file" --

...) gforth 222
required(i*x addr u --

i*x) gforth 222
resize(a_addr1 u -- a_addr2

wior) memory 121
resize-file(ud wfileid --

wior) file 225
restart(task --)

gforth-experimental 343
restore(compilation orig1

-- ; run-time --)

gforth 151
restore-input(x1 .. xn n --

flag) core-ext 199
restrict(--) gforth . . . 178
rol(u1 u -- u2

) gforth 107
roll(x0 x1 .. xn n -- x1 ..

xn x0) core-ext 114

Word Index 528

Root(--) gforth 214
ror(u1 u -- u2

) gforth 107
rot(w1 w2 w3 -- w2 w3

w1) core 114
rp!(a-addr --

) gforth 116
rp@(-- a-addr

) gforth 116
rp0(-- a-addr

) gforth 116
rshift(u1 u --

u2) core 106

S
s>d(n -- d) core 97
s>f(n -- r) float 110
s>number?(addr u -- d

f) gforth 259
s>unumber?(c-addr u -- ud

flag) gforth 259
s\"(compilation ’ccc"’ -- ;

run-time -- c-addr u)

gforth 247
S"(compilation ’ccc"’ -- ;

run-time -- c-addr u)

core,file 247
save-buffer(buffer

--) gforth 235
save-buffers(--

) block 235
save-cov(--)

gforth-exp 341
save-input(-- x1 .. xn n

) core-ext 198
savesystem("name"

--) gforth 435

scope(compilation -- scope

; run-time --)

gforth 269
scr(-- a-addr)

block-ext 234
seal(--) gforth 214
search(c-addr1 u1 c-addr2

u2 -- c-addr3 u3 flag)

string 127
search-wordlist(c-addr

count wid -- 0 | xt +-1)

search 214
see("<spaces>name"

--) tools 331
see-code("name" --

) gforth 331
see-code-range(addr1 addr2

--) gforth 331
select(u1 u2 f -- u

) gforth 95
selector("name" --

) objects 314
self(-- o) oof 318
semaphore("name" --)

gforth-experimental 344
set-current(wid --

) search 211
set-dir(c-addr u --

wior) gforth 227
set-order(widn .. wid1 n

--) search 212
set-precision(u --)

float-ext 239
set-recognizers(xt1 .. xtn

n) unknown 208
sf!(r sf-addr --)

float-ext 122
sf@(sf-addr -- r)

float-ext 122
sfalign(--)

float-ext 120

Word Index 529

sfaligned(c-addr -- sf-addr

) float-ext 125
sffield:(u1 "name" -- u2)

X:structures 293
sfloat%(-- align

size) gforth 292
sfloat+(sf-addr1 --

sf-addr2) float-ext . . . 125
sfloats(n1 -- n2)

float-ext 125
sh("..." --) gforth 384
shift-args(--

) gforth 266
sign(n --) core 242
simple-fkey-string(u1 --

c-addr u) gforth 258
simple-see("name"

--) gforth 331
simple-see-range(addr1

addr2 --) gforth 331
sl@(c-addr -- n

) gforth 122
SLiteral(Compilation

c-addr1 u ; run-time --

c-addr2 u) string 188
slurp-fid(fid -- addr

u) gforth 225
slurp-file(c-addr1 u1 --

c-addr2 u2) gforth 225
sm/rem(d1 n1 -- n2

n3) core 100
source(-- addr

u) core. 197
source-id(-- 0 | -1 | fileid

) core-ext,file 198
sourcefilename(--

c-addr u) gforth 222
sourceline#(-- u

) gforth 222
sp!(a-addr -- S:...

) gforth 116

sp@(S:... -- a-addr

) gforth 116
sp0(-- a-addr

) gforth 116
space(--) core 245
spaces(u --) core 246
span(-- c-addr)

core-ext-obsolescent . . . 261
stacksize(-- n)

gforth-experimental 342
stacksize4(-- dsize fsize

rsize lsize)

gforth-experimental 342
staged/-divisor(addr1 --

addr2) gforth 104
staged/-size(-- u

) gforth 103
static(--) oof 319
stderr(-- wfileid

) gforth 225
stdin(-- wfileid

) gforth 225
stdout(-- wfileid

) gforth 225
stop(--)

gforth-experimental 343
stop-ns(timeout --)

gforth-experimental 343
str<(c-addr1 u1 c-addr2 u2

-- f) gforth 127
str=(c-addr1 u1 c-addr2 u2

-- f) gforth 127
string-prefix?(c-addr1 u1

c-addr2 u2 -- f)

gforth 127
struct(-- align size

) gforth 292
sub-list?(list1 list2 --

f) unknown 279

Word Index 530

success-color(--

) gforth 254
super("name" --) oof . . . 318
sw@(c-addr -- n

) gforth 122
swap(w1 w2 -- w2

w1) core 114
system(c-addr u --

) gforth 384

T
table(-- wid) gforth . . . 212
task(stacksize "name" --)

gforth-experimental 342
THEN(compilation orig -- ;

run-time --) core 139
third(w1 w2 w3 -- w1 w2 w3

w1) gforth 114
this(-- object)

objects 314
threading-method(--

n) gforth 382
throw(y1 .. ym nerror -- y1

.. ym / z1 .. zn error)

exception 146
thru(i*x n1 n2 -- j*x

) block-ext 236
tib(-- addr)

core-ext-obsolescent . . . 198
time&date(-- nsec nmin

nhour nday nmonth nyear)

facility-ext 384
to-this(object --

) objects 314
TO(value "name" --

) core-ext 158
toupper(c1 -- c2

) gforth 246
True(unknown) unknown . . 95

try(compilation -- orig ;

run-time -- R:sys1)

gforth 149
tt(u --) gforth 331
tuck(w1 w2 -- w2 w1 w2

) core-ext 114
type(c-addr u

--) core 246
typewhite(addr n --

) gforth 247

U
u*/(u1 u2 u3 -- u4

) gforth 100
u*/mod(u1 u2 u3 -- u4

u5) gforth 101
u.(u --) core 237
u.r(u n --) core-ext . . . 237
u/(u1 u2 -- u) gforth . . . 99
u/-stage1m(u addr-reci

--) gforth 103
u/-stage2m(u1 a-reci --

uquotient) gforth 104
u/mod(u1 u2 -- u3 u4

) gforth 99
u/mod-stage2m(u1 a-reci --

umodulus uquotient)

gforth 104
u<(u1 u2 -- f) core 108
u<=(u1 u2 -- f

) gforth 108
u>(u1 u2 -- f)

core-ext 108
u>=(u1 u2 -- f

) gforth 108
U+DO(compilation -- do-sys

; run-time u1 u2 -- |

loop-sys) gforth 141

Word Index 531

U-DO(compilation -- do-sys

; run-time u1 u2 -- |

loop-sys) gforth 141
ud.(ud --) gforth 237
ud.r(ud n --) gforth . . . 238
ud/mod(ud1 u2 -- urem

udquot) gforth 101
UDefer("name" --)

gforth-experimental 344
ul@(c-addr -- u

) gforth 123
um*(u1 u2 -- ud) core . . . 97
um/mod(ud u1 -- u2

u3) core 100
umax(u1 u2 -- u

) gforth 96
umin(u1 u2 -- u

) gforth 96
umod(u1 u2 -- u

) gforth 99
umod-stage2m(u1 a-reci --

umodulus) gforth 104
under+(n1 n2 n3 -- n

n2) gforth 96
unlock(semaphore --)

gforth-experimental 344
unloop(R:w1 R:w2

--) core 142
UNREACHABLE(--

) gforth 271
UNTIL(compilation dest -- ;

run-time f --) core 139
unused(-- u)

core-ext 118
update(--) block 235
updated?(n -- f

) gforth 235
use("file" --

) gforth 234
user’(’user’ -- n)

gforth-experimental 344

User("name" --

) gforth 155
utime(-- dtime

) gforth 385
UValue("name" --

) unknown 344
uw@(c-addr -- u

) gforth 122

V
Value(w "name" --)

core-ext 158
var(size --) oof . . . 319, 320
Variable("name"

--) core 155
view("name" --

) gforth 336
vlist(--) gforth 214
Vocabulary("name"

--) gforth 214
vocs(--) gforth 215

W
w!(w c-addr --

) gforth 122
w/o(-- fam) file 223
warning-color(--

) gforth 254
WARNING"(compilation ’ccc"’

-- ; run-time f --)

gforth 152
warnings(-- addr

) gforth 152
where("name" --

) gforth 330
whereg("name" --

) gforth 330

Word Index 532

WHILE(compilation dest --

orig dest ; run-time f --)

core . 140

with(o --) oof 319

within(u1 u2 u3 -- f

) core-ext 108

word(char

"<chars>ccc<char>-- c-addr

) core 209

wordlist(-- wid

) search 212

words(--) tools 214

write-file(c-addr u1

wfileid -- wior)

file . 224

write-line(c-addr u wfileid

-- ior) file 224

wrol(u1 u -- u2

) gforth 107

wror(u1 u -- u2

) gforth 107

WTF??(--) unknown 335

ww(u --) gforth 330

X
x-size(xc-addr u1 --

u2) xchar 263
x-width(xc-addr u -- n

) xchar-ext 264
x\string-(xc-addr u1 --

xc-addr u2) xchar 264
xc!+?(xc xc-addr1 u1 --

xc-addr2 u2 f)

xchar-ext 263
xc-size(xc -- u)

xchar-ext 263
xc@+(xc-addr1 -- xc-addr2

xc) xchar-ext 263
xchar+(xc-addr1 -- xc-addr2

) xchar-ext 263
xchar-(xc-addr1 -- xc-addr2

) xchar-ext 263
xchar-encoding(-- addr u

) xchar-ext 265
xemit(xc --)

xchar-ext 264
xkey(-- xc)

xchar-ext 264
xor(w1 w2 -- w) core 105
xt-new(... class xt --

object) objects 314
xt-see(xt --) gforth . . . 331

533

Concept and Word Index

Not all entries listed in this index are present verbatim in
the text. This index also duplicates, in abbreviated form,
all of the words listed in the Word Index (only the names
are listed for the words here).

!
! . 121
!!FIXME!! 335
!@ . 345

"
", stack item type 93

#
. 241
#! . 440
#-prefix for decimal

numbers 201
#> . 242
#>> . 242
#loc . 336
#s . 241
#tib . 198

$
$! . 250
$!len . 250
$+! . 251
$+!len . 250
$-prefix for

hexadecimal numbers 201
$. 252
$? . 384
$[] . 252
$[]! . 252
$[]# . 252
$[]+! . 252
$[]. 253
$[]@ . 252
$[]boot . 253
$[]free . 253
$[]map . 252
$[]save . 253
$[]saved 253
$[]slurp 252
$[]slurp-file 252
$[]Variable 253
$@ . 250
$@len . 250
$boot . 253
$del . 250
$exec . 251
$free . 251

Concept and Word Index 534

$init . 251
$ins . 251
$iter . 251
$over . 251
$save . 253
$saved . 253
$slurp . 252
$slurp-file 252
$split . 251
$tmp . 251
$Variable 253

%
%-prefix for binary

numbers 201
%align . 291
%alignment 291
%alloc . 291
%allocate 291
%allot . 291
%size . 292

&
&-prefix for decimal

numbers 201

’
’ . 181, 318
’-prefix for

character strings 201
’cold . 441
’s . 344

(
(. 94
(local) . 284

)
) . 337

*
* . 96
*/ . 100
*/f . 100
*/mod . 100
*/modf . 100
*/mods . 100
*/s . 100

+
+ . 96
+! . 121
+!@ . 345
+DO . 141
+field . 293
+load . 236
+LOOP . 142
+ltrace . 336
+thru . 236
+TO . 158
+x/string 263

,
, . 119

Concept and Word Index 535

–
- . 96
–, tutorial 25
--> . 236
–appl-image,

command-line option 5
–application,
gforthmi option 436

–clear-dictionary,
command-line option 7

–data-stack-size,
command-line option 6

–debug,
command-line option 7

–dictionary-size,
command-line option 5

–die-on-signal,
command-line-option 7

–dynamic
command-line option 451

–dynamic,
command-line option 8

–enable-force-reg,
configuration flag 444

–fp-stack-size,
command-line option 6

–help, command-line option . . . 7
–image file, invoke

image file 438
–image-file,

command-line option 5
–locals-stack-size,

command-line option 6
–no-dynamic

command-line option 450
–no-dynamic,

command-line option 8
–no-offset-im,

command-line option 7

–no-super
command-line option 450

–no-super,
command-line option 8

–offset-image,
command-line option 7

–path, command-line option . . 5
–print-metrics,

command-line option 9
–return-stack-size,

command-line option 6
–ss-greedy,

command-line option 8
–ss-min-...,

command-line options 8
–ss-number,

command-line option 8
–version,

command-line option 7
–vm-commit,

command-line option 6
-d, command-line option 6
-DFORCE REG 444
-DO . 141
-DUSE FTOS 455
-DUSE NO FTOS 455
-DUSE NO TOS 454
-DUSE TOS 454
-f, command-line option 6
-h, command-line option 7
-i, command-line option 5
-i, invoke image file 438
-l, command-line option 6
-LOOP . 142
-ltrace . 336
-m, command-line option 5
-p, command-line option 5
-r, command-line option 6
-rot . 114
-trailing 128
-trailing-garbage 264

Concept and Word Index 536

-v, command-line option 7

.

. 237

." . 246

.", how it works 84

.(. 246

... 332

.\" . 246

.cover-raw 341

.coverage 340

.debugline 334

.emacs . 426

.fi files . 431

.gforth-history 12

.id . 186

.name . 186

.path . 229

.r . 237

.s . 332

/
/ . 99
/does-handler 382
/f . 99
/f-stage1m 103
/f-stage2m 103
/l . 126
/mod . 99
/modf . 99
/modf-stage2m 103
/mods . 99
/s . 99
/string . 128
/w . 126

:
: . 158, 318
:, passing data across 188
:: . 318, 321
:}d . 281
:}h . 281
:}l . 281
:m . 313
:noname . 159

;
; . 158
;> . 282
;] . 160
;code . 361
;CODE ending sequence 415
;CODE, name not defined

via CREATE 416
;CODE, processing input 415
;m . 313
;m usage 302
;s . 146

<
< . 108
<# . 241
<<# . 241
<= . 108
<> . 108
<{: . 282
<bind> . 310
<event . 346
<to-inst> 314

=
= . 108
=mkdir . 227

Concept and Word Index 537

>
> . 108
>= . 108
>addr . 281
>body . 168
>BODY of

non-CREATEd words 405
>code-address 382
>definer 383
>does-code 382
>float . 260
>float1 . 260
>in . 197
>IN greater than

input buffer 403
>l . 277
>name . 185
>number . 259
>order . 212
>r . 115

?
? . 332
?!@ . 345
??? . 335
?DO . 141
?dup . 114
?dup-IF . 141
?DUP-0=-IF 141
?events . 346
?LEAVE . 142
?of . 143

[
[. 187
[’] . 182
[+LOOP] . 206
[: . 160
[?DO] . 205
[] . 318
[{: . 280
[AGAIN] . 206
[BEGIN] . 206
[bind] . 310
[bind] usage 300
[char] . 248
[COMP’] . 184
[current] 311
[DO] . 205
[ELSE] . 205
[ENDIF] . 205
[FOR] . 205
[IF] . 204
[IF] and POSTPONE 416
[IF], end of the input source

before matching [ELSE] or
[THEN] 416

[IFDEF] . 205
[IFUNDEF] 205
[LOOP] . 205
[NEXT] . 206
[parent] 313
[parent] usage 301
[REPEAT] 206
[THEN] . 205
[to-inst] 314
[UNTIL] . 206
[WHILE] . 206

Concept and Word Index 538

]
] . 187
]] . 190
]L . 187

@
@ . 121
@local# . 276

\
\ . 94
\, editing with Emacs 425
\, line length in blocks 406
\c . 351
\G . 95

{
{: . 284

~
~~ . 334
~~, removal with Emacs 425
~~1bt . 335
~~bt . 335
~~Value . 335
~~Variable 335

0
0< . 108
0<= . 108
0<> . 108
0= . 108
0> . 108
0>= . 108
0x-prefix for

hexadecimal numbers 201

1
1+ . 96
1- . 96
1/f . 111

2
2! . 122
2* . 106
2, . 119
2/ . 106
2>r . 116
2@ . 121
2Constant 156
2drop . 114
2dup . 114
2field: . 293
2Literal 187
2nip . 114
2over . 114
2r> . 116
2r@ . 116
2rdrop . 116
2rot . 114
2swap . 114
2tuck . 114
2Variable 155

Concept and Word Index 539

A
a_, stack item type 92
abi-code 361
abort . 152
ABORT" . 152
ABORT", exception

abort sequence 396
abs . 96
abstract class 297, 316
accept . 259
ACCEPT, display after

end of input 396
ACCEPT, editing 394
action-of 175
activate 343
add-cflags 355
add-incdir 355
add-ldflags 355
add-lib . 355
add-libpath 355
addr . 158
address alignment

exception 403
address alignment exception,

stack overflow 400
address arithmetic for

structures 285
address arithmetic words . . . 123
address of counted string . . . 245
address unit 123
address unit, size in bits 397
ADDRESS-UNIT-BITS 126
after-locate 329
AGAIN . 139
AHEAD . 139
Alias . 176
aliases . 176
align . 119
aligned . 124
aligned addresses 393

alignment faults 403
alignment of addresses

for types 123
alignment tutorial 46
allocate 120
allot . 118
also . 213
also, too many word lists in

search order 417
also-path 229
ambiguous conditions,

block words 406
ambiguous conditions,

core words 399
ambiguous conditions,

double words 407
ambiguous conditions,

facility words 408
ambiguous conditions,

file words 410
ambiguous conditions,

floating-point words 412
ambiguous conditions,

locals words 414
ambiguous conditions,

programming-tools
words . 416

ambiguous conditions,
search-order words 417

and . 105
angles in trigonometric

operations 111
annotate-cov 340
ans-report.fs 389
arg . 266
argc . 266
argument input source different

than current input source for
RESTORE-INPUT 403

argument type mismatch . . . 399

Concept and Word Index 540

argument type mismatch,
RESTORE-INPUT 403

arguments, OS
command line 265

argv . 266
arithmetic words 95
arithmetics tutorial 20
arrays . 154
arrays tutorial 60
arshift . 106
asptr 318, 319
assembler 359, 360
ASSEMBLER, search order

capability 415
assert(. 337
assert-level 338
assert0(. 337
assert1(. 337
assert2(. 337
assert3(. 337
assertions 336
ASSUME-LIVE 273
at-xy . 254
AT-XY can’t be performed on

user output device 408
Attempt to use zero-length

string as a name 402
attr! . 254
au (address unit) 123
authors . 11
authors of Gforth 465
auto-indentation of Forth

code in Emacs 428

B
b . 328
backtrace 387
backtrace examination 331
backtraces with
gforth-fast 388

barrier . 345
base . 201
base is not decimal (REPRESENT,
F., FE., FS.) 413

base-execute 201
basic objects usage 297
batch processing

with Gforth 9
before-locate 329
begin-structure 293
BEGIN . 139
benchmarking

Forth systems 456
Benchres 458
bin . 223
bind 310, 318
bind usage 300
bind’ . 310
bitwise operation words 105
bl . 245
blank . 127
blk . 198
BLK, altering BLK 406
block . 234
block buffers 231
block number invalid 406
block read not possible 406
block transfer, I/O

exception 406
block words, ambiguous

conditions 406
block words,

implementation-defined
options 406

Concept and Word Index 541

block words, other system
documentation 407

block words, system
documentation 406

block-included 236
block-offset 234
block-position 234
blocks . 230
blocks file 231
blocks files, use

with Emacs 429
blocks in files 410
blocks.fb 231
Boolean flags 95
bootmessage 442
bound . 318
bounds . 128
break" . 340
break: . 340
broken-pipe-error 261
bt . 331
buffer . 235
bug reporting 464
bw . 330
bw-cover 341
bye . 10
bye during gforthmi 437

C
c! . 121
c$+! . 251
c, . 119
c, stack item type 92
c-callback 356
c-function 351
c-funptr 352
c-library 354
c-library-name 354
c-value . 351

c-variable 351
c_, stack item type 93
c@ . 121
C function pointers to

Forth words 355
C function pointers, calling

from Forth 352
C functions, calls to 347
C functions, declarations . . . 349
C interface 347
C" . 248
C, using C for the engine . . . 443
call-c . 357
Callback functions

written in Forth 355
calling a definition 145
calling C functions 347
case . 143
case as generalized

control structure 136
case sensitivity 93
case-sensitivity

characteristics 398
case-sensitivity for

name lookup 394
CASE control structure 130
catch . 148
catch and backtraces 388
catch and this 307
catch in m: ... ;m 302
cell . 124
cell size . 397
cell% . 291
cell+ . 124
cell- . 124
cell-aligned addresses 393
cell/ . 124
cells . 124
cfalign . 120
cfaligned 125
CFA . 183

Concept and Word Index 542

cfield: . 293
changing the compilation word

list (during compilation) . . 417
char . 248
char size 397
char% . 291
char+ . 124
character editing of ACCEPT

and EXPECT 394
character set 394
character strings - compiling

and displaying 245
character strings - formats . . 245
character strings - moving

and copying 126
character-aligned address

requirements 394
character-set extensions and

matching of names 394
characters - compiling

and displaying 245
characters tutorial 45
chars . 124
child class 295
child words 163
class 294, 310, 317, 320
class binding 300
class binding as

optimization 301
class binding,

alternative to 300
class binding,

implementation 307
class declaration 319
class definition,

restrictions 298, 317
class implementation 320
class implementation and

representation 307
class scoping

implementation 308

class usage 297, 315
class->map 310
class-inst-size 310
class-inst-size

discussion 299
class-override! 310
class-previous 310
class; . 320
class; usage 315
class>order 311
class? . 317
classes and scoping 303
clear screen 254
clear-libs 355
clear-path 229
clearstack 332
clearstacks 332
clock tick duration 408
close-dir 227
close-file 223
close-pipe 261
closures . 280
cmove . 126
cmove> . 127
code . 361
code address 381
code coverage 340
code field address 183, 381
code words 359
code-address! 382
CODE ending sequence 415
CODE, processing input 415
colon definitions 158, 159
colon definitions, nesting . . . 160
colon definitions, tutorial 24
colon-sys, passing

data across : 188
color-cover 341
combined words 178

Concept and Word Index 543

command line
arguments, OS 265

command-line editing 11
command-line options 4
comment editing

commands 425
comments 94
comments tutorial 23
common-list 279
comp-i.fs 436
comp.lang.forth 468
COMP’ . 184
compare . 127
comparison of

object models 325
comparison tutorial 34
compilation semantics . . . 82, 177
compilation

semantics tutorial 52
compilation token 183
compilation tokens, tutorial . . 65
compilation word list 211
compilation word list, change

before definition ends 417
compile state 194
compile, 192
compile-lp+! 277
compile-only 178
compile-only warning,

for ’ etc. 400
compile-only words 177
compiled code

examination 331
compiling compilation

semantics 188
compiling words 186
cond . 347
conditional compilation 204
conditionals, tutorial 32
const-does> 172
Constant 156

constants 156
construct 311
construct discussion 299
context . 215
context-sensitive help 425
contiguous regions and

heap allocation 120
contiguous regions in

dictionary allocation 118
contof . 144
contributors to Gforth 465
control characters as

delimiters 395
control structures 128
control structures for

selection 128
control structures

programming style 144
control structures,

user-defined 138
control-flow stack 138
control-flow stack items,

locals information 279
control-flow stack

underflow 416
control-flow stack, format . . . 395
convert . 260
convertin strings to

numbers 259
core words, ambiguous

conditions 399
core words,

implementation-defined
options 393

core words, other system
documentation 405

core words, system
documentation 393

count . 245
counted loops 132

Concept and Word Index 544

counted loops with
negative increment 134

counted string 245
counted string,

maximum size 396
counted strings 245
cov% . 341
cov+ . 341
cputime . 385
cr . 247
Create . 153
create-file 223
create...does> tutorial 58
CREATE ... DOES> 163
CREATE ... DOES>,

applications 166
CREATE ... DOES>, details 167
CREATE and alignment 124
creating objects 299
critical-section 345
cross-compiler 437, 460
cross.fs 437, 460
cs-vocabulary 212
cs-wordlist 212
CS-DROP . 140
CS-PICK . 140
CS-PICK, fewer than u+1 items

on the control flow-stack . . 416
CS-ROLL . 140
CS-ROLL, fewer than u+1 items

on the control flow-stack . . 416
CT (compilation token) 183
CT, tutorial 65
current . 215
current’ 311
current-interface 311
current-interface

discussion 307
currying . 167
cursor control 247

cursor positioning 254

D
d+ . 97
d, stack item type 92
d- . 97
d. 237
d.r . 238
d< . 109
d<= . 109
d<> . 109
d= . 109
d> . 109
d>= . 109
d>f . 110
d>s . 97
d0< . 109
d0<= . 109
d0<> . 109
d0= . 109
d0> . 109
d0>= . 109
d2* . 106
d2/ . 106
D>F, d cannot be presented

precisely as a float 413
D>S, d out of range of n 407
dabs . 97
darshift 106
data space -

reserving some 118
data space available 405
data space containing definitions

gets de-allocated 403
data space pointer not properly

aligned, ,, C, 403
data space read/write with

incorrect alignment 403
data stack 113

Concept and Word Index 545

data stack
manipulation words 114

data structure locals 268
data-relocatable

image files 435
data-space,

read-only regions 397
dbg . 340
debug tracer editing

commands 425
debug-fid 335
debugging 334
debugging output, finding the

source location in Emacs . . 425
debugging Singlestep 338
dec. 237
decimal . 201
declaring C functions 349
decompilation tutorial 25
default type of locals 268
default-color 254
defer . 319
Defer . 175
defer! . 175
defer@ . 175
deferred words 173
defers . 175
definer . 383
definer! 383
defines . 321
defining defining words 163
defining words 153
defining words tutorial 58
defining words with arbitrary

semantics combinations . . 180
defining words

without name 159
defining words, name

given in a string 161
defining words, simple 153

defining words,
user-defined 161

definition . 70
definitions 211, 317
definitions, tutorial 24
delete . 250
delete-file 223
Depth . 332
depth changes during

interpretation 390
depth-changes.fs 390
design of stack

effects, tutorial 30
dest, control-flow

stack item 139
df! . 122
df_, stack item type 93
df@ . 122
df@ or df! used with an address

that is not double-float
aligned 412

dfalign . 120
dfaligned 125
dffield: 293
dfloat% . 291
dfloat+ . 125
dfloats . 125
dict-new 311
dict-new discussion 299
dictionary 194
dictionary in

persistent form 431
dictionary overflow 401
dictionary size default 438
digits > 35 395
direct threaded inner

interpreter 445
Directories 226
disassembler, general 365
discode . 365
dispose . 317

Concept and Word Index 546

dividing by zero 400
dividing by zero,

floating-point 413
Dividing classes 304
dividing integers 98
dividing many integers with

the same divisor 102
Division by zero 98, 101
division rounding 398
division with potentially

negative operands 95
dlshift . 106
dmax . 97
dmin . 97
dnegate . 97
DO loops . 132
docol: . 383
docon: . 383
documentation for a word . . 329
dodefer: 383
dodoes routine 451
does-code! 382
does> tutorial 58
does>-code 382
does>-handler 382
DOES> . 167
DOES> implementation 451
DOES> in a separate

definition 167
DOES> in

interpretation state 168
DOES> of

non-CREATEd words 405
DOES>, visibility of

current definition 399
DOES>-code 451
DOES>-parts, stack effect 166
dofield: 383
DONE . 142
double precision

arithmetic words 97

double words, ambiguous
conditions 407

double words, system
documentation 407

double% . 291
double-cell numbers,

input format 199
doubly indirect

threaded code 437
douser: . 383
dovar: . 383
DO . 142
dpl . 201
drol . 107
drop . 114
dror . 107
drshift . 106
du/mod . 100
du< . 109
du<= . 109
du> . 109
du>= . 109
dump . 333
dup . 114
duration of a system

clock tick 408
dynamic allocation

of memory 120
Dynamic superinstructions

with replication 448
Dynamically linked libraries

in C interface 354

Concept and Word Index 547

E
e$, . 346
early . 319
early binding 300
edit 329, 336
edit-line 259
editing in ACCEPT

and EXPECT 394
eflit, . 346
eforth performance 456
ekey . 256
ekey>char 256
ekey>fkey 256
ekey? . 256
EKEY, encoding of

keyboard events 408
elements of a Forth system . . . 86
elit, . 346
ELSE . 140
Emacs and Gforth 425
emit . 246
emit-file 224
EMIT and non-graphic

characters 394
empty-buffer 235
empty-buffers 235
end-c-library 354
end-class 311, 320
end-class usage 297
end-class-noname 311
end-code 361
end-interface 311
end-interface usage 306
end-interface-noname 311
end-methods 312
end-struct 291
end-struct usage 287
end-structure 293
endcase . 143
ENDIF . 141

endless loop 131
endof . 143
endscope 269
endtry . 149
endtry-iferror 151
endwith . 319
engine . 443
engine performance 456
engine portability 443
engine.s 455
engines, gforth vs. gforth-fast

vs. gforth-itc 448
environment variables . . . 13, 437
environment wordset 91
environment-wordlist 218
environment? 218
ENVIRONMENT? string

length, maximum 396
environmental queries 218
environmental restrictions . . 393
equality of floats 112
erase . 126
error messages 387
error output, finding the source

location in Emacs 425
error-color 254
etags.fs 426
evaluate 199
event-loop 346
event: . 346
event> . 346
examining data and code . . . 332
exception 147
exception abort

sequence of ABORT" 396
exception source code 331
exception when

including source 409
exception words,

implementation-defined
options 407

Concept and Word Index 548

exception words, system
documentation 407

exceptions 146
exceptions tutorial 56
executable image file 438
execute . 183
execute-parsing 210
execute-parsing-file 210
execute-task 342
executing code on startup 9
execution frequency 340
execution semantics 177
execution token 70, 181
execution token of last

defined word 159
execution token of words with

undefined execution
semantics 400

execution tokens tutorial 54
exercises . 89
exit in m: ... ;m 302
exitm . 312
exitm discussion 302
EXIT . 146
expect . 260
EXPECT, display after

end of input 396
EXPECT, editing 394
explicit register

declarations 444
exponent too big for conversion

(DF!, DF@, SF!, SF@) 413
extended records 288

F
f! . 122
f! used with an address that is

not float aligned 412
f* . 110
f** . 111
f+ . 110
f, . 119
f, stack item type 92
f- . 110
f. 238
f.rdp . 239
f.s . 332
f/ . 110
f< . 113
f<= . 113
f<> . 113
f= . 113
f> . 113
f>= . 113
f>buf-rdp 242
f>d . 110
f>l . 277
f>s . 110
f>str-rdp 242
f_, stack item type 93
f@ . 122
f@ used with an address that is

not float aligned 412
f@local# 276
f~ . 113
f~abs . 112
f~rel . 112
f0< . 113
f0<= . 113
f0<> . 113
f0= . 113
f0> . 113
f0>= . 113
f2* . 111

Concept and Word Index 549

f2/ . 111
f83name, stack item type 93
F>D, integer part of float cannot

be represented by d 414
fabs . 110
facility words, ambiguous

conditions 408
facility words,

implementation-defined
options 408

facility words, system
documentation 408

facos . 112
FACOS, |float|>1 414
facosh . 112
FACOSH, float<1 413
factoring . 68
factoring similar colon

definitions 166
factoring tutorial 29
falign . 119
faligned 125
falog . 111
False . 95
fam (file access method) 223
fasin . 112
FASIN, |float|>1 414
fasinh . 112
FASINH, float<0 414
fatan . 112
fatan2 . 112
FATAN2, both arguments are

equal to zero 413
fatanh . 112
FATANH, |float|>1 414
fconstant 156
fcos . 111
fcosh . 112
fdepth . 332
FDL, GNU Free

Documentation License . . . 469

fdrop . 115
fdup . 115
fe. 238
fexp . 111
fexpm1 . 111
ffield: . 293
ffourth . 115
field . 291
field naming convention 289
field usage 287
field usage in class

definition 298
field: . 293
file access methods used 409
file exceptions 409
file input nesting,

maximum depth 410
file line terminator 409
file name format 409
file search path 228
file words, ambiguous

conditions 410
file words,

implementation-defined
options 409

file words, system
documentation 408

file-handling 223
file-position 225
file-size 225
file-status 225
FILE-STATUS, returned

information 409
filename-match 227
filenames in ~~ output 335
filenames in

assertion output 338
files . 220
files containing blocks 410

Concept and Word Index 550

files containing Forth
code, tutorial 22

files tutorial 49
fill . 127
find . 213
find-name 184
find-name-in 185
first definition 78
first field optimization 289
first field optimization,

implementation 290
fkey. 258
flags on the command line 4
flags tutorial 34
flavours of locals 268
FLiteral 188
fln . 111
FLN, float<=0 413
flnp1 . 111
FLNP1, float<=-1 413
float . 125
float% . 292
float+ . 124
floating point

arithmetic words 109
floating point numbers,

format and range 411
floating point tutorial 47
floating point unidentified fault,

integer division 400
floating-point

arithmetic, pitfalls 109
floating-point comparisons . . 112
floating-point

dividing by zero 413
floating-point numbers,

input format 199
floating-point numbers,

rounding or truncation . . . 411
floating-point result

out of range 412

floating-point stack 113
floating-point stack in

the standard 113
floating-point stack

manipulation words 115
floating-point stack size 412
floating-point stack width . . . 412
Floating-point

unidentified fault 98
Floating-point unidentified fault

(on integer division) 101
floating-point

unidentified fault, F>D 414
floating-point unidentified fault,
FACOS, FASIN or FATANH . . 414

floating-point unidentified
fault, FACOSH 413

floating-point unidentified fault,
FASINH or FSQRT 414

floating-point unidentified
fault, FLN or FLOG 413

floating-point unidentified
fault, FLNP1 413

floating-point unidentified fault,
FP divide-by-zero 413

floating-point words,
ambiguous conditions 412

floating-point words,
implementation-defined
options 411

floating-point words, system
documentation 411

floating-stack 115
floats . 124
flog . 111
FLOG, float<=0 413
floor . 110
floored division 98
FLOORED . 101
flush . 235

Concept and Word Index 551

flush-file 225
flush-icache 361
fm/mod . 99
fmax . 110
fmin . 110
fnegate . 110
fnip . 115
FOR loops 134
foreign language interface . . . 347
FORGET, deleting the

compilation word list 416
FORGET, name can’t

be found 416
FORGET, removing a

needed definition 416
forgeting words 333
form . 254
format and range of floating

point numbers 411
format of glossary entries 90
formatted numeric output . . 240
Forth . 213
Forth - an introduction 68
Forth mode in Emacs 425
Forth source files 221
Forth Tutorial 18
forth-recognize 208
Forth-related information . . . 468
forth-wordlist 211
forth.el 425
FOR . 142
fourth . 114
fover . 115
fp! . 116
fp. 238
fp@ . 116
fp0 . 116
FP tutorial 47
fpath . 229
fpick . 115
free . 121

frequently asked questions . . 468
frot . 115
fround . 110
fs. 238
fsin . 111
fsincos . 111
fsinh . 112
fsqrt . 111
FSQRT, float<0 414
fswap . 115
ftan . 112
FTAN on an argument r1 where

cos(r1) is zero 413
ftanh . 112
fthird . 115
ftuck . 115
fully relocatable

image files 435
functions, tutorial 24
fvariable 155

G
g . 328
gdb disassembler 365
general control

structures (case) 136
general files 223
get-block-fid 234
get-current 211
get-dir . 227
get-order 212
get-recognizers 208
getenv . 384
gforth . 219
Gforth - leaving 10
gforth engine 448
Gforth environment 4
Gforth extensions 418
Gforth files 14

Concept and Word Index 552

Gforth locals 267
Gforth performance 456
Gforth stability 3
gforth-ditc 437
gforth-fast and

backtraces 388
gforth-fast engine 448
gforth-fast, difference

from gforth 388
gforth-itc engine 448
gforth.el 425
gforth.el, installation 426
gforth.fi, relocatability . . . 435
GFORTH –

environment variable . . 13, 437
GFORTHD –

environment variable . . 13, 437
GFORTHHIST –

environment variable 13
gforthmi 436
GFORTHPATH –

environment variable 13
GFORTHSYSTEMPREFIX –

environment variable 13
gg . 330
giving a name to a

library interface 353
glossary notation format 90
GNU C for the engine 444
goals of the Gforth project 2

H
halt . 343
header space 210
heap allocation 120
heap-new 312
heap-new discussion 299
heap-new usage 298
help . 10, 329

here . 118
hex . 201
hex. 237
highlighting Forth code

in Emacs 427
hilighting Forth code

in Emacs 427
history file 12
hold . 242
how: . 320
hybrid direct/indirect

threaded code 447

I
i . 132
I/O - blocks 230
I/O - file-handling 220
I/O - keyboard

and display 236
I/O - see character strings . . 245
I/O - see input 259
I/O exception in

block transfer 406
id. 186
IDE (integrated development

environment) 327
if, tutorial 32
iferror . 149
IF . 139
IF control structure 128
image file 431
image file background 432
image file

initialization sequence 440
image file invocation 438
image file loader 433
image file,

data-relocatable 435
image file, executable 438

Concept and Word Index 553

image file, fully
relocatable 435

image file, non-relocatable . . 434
image file, stack and

dictionary sizes 438
image file, turnkey

applications 441
image license 431
immediate 178
immediate words 83, 177
immediate, tutorial 52
implementation 312
implementation of locals 276
implementation of

structures 290
implementation usage 306
implementation-defined

options, block words 406
implementation-defined

options, core words 393
implementation-defined options,

exception words 407
implementation-defined options,

facility words 408
implementation-defined

options, file words 409
implementation-defined options,

floating-point words 411
implementation-defined

options, locals words 414
implementation-defined options,

memory-allocation
words . 415

implementation-defined options,
programming-tools
words . 415

implementation-defined options,
search-order words 417

in-lining of constants 157
include . 222
include search path 228

include,
placement in files 426

include-file 221
INCLUDE-FILE, file-id

is invalid 410
INCLUDE-FILE, I/O exception

reading or closing file-id . . 411
included 221
included? 222
INCLUDED, I/O exception

reading or closing file-id . . 411
INCLUDED, named file

cannot be opened 411
including files 221
including files, stack effect . . 221
indentation of Forth

code in Emacs 428
indirect threaded inner

interpreter 445
infile-execute 226
info-color 254
inheritance 295
init . 317
init-asm 360
init-object 312
init-object discussion 299
initialization sequence

of image file 440
initiate 343
inner interpreter

implementation 445
inner interpreter

optimization 445
inner interpreter,

direct threaded 445
inner interpreter,

indirect threaded 445
input buffer 194
input format for

double-cell numbers 199

Concept and Word Index 554

input format for
floating-point numbers . . . 199

input format for
single-cell numbers 199

input from pipes 14
input line size, maximum . . . 410
input line terminator 396
Input Redirection 225
input sources 198
input stream 208
input, linewise from

terminal 259
input, single-key 255
insert . 250
inst-value 312
inst-value usage 303
inst-value visibility 303
inst-var 312
inst-var implementation . . . 308
inst-var usage 302
inst-var visibility 303
instance variables 294
instruction pointer 445
insufficient data stack or

return stack space 400
insufficient space for loop

control parameters 401
insufficient space in the

dictionary 401
integer types, ranges 397
integrated development

environment 327
interface 312
interface implementation . . . 308
interface to C functions 347
interface usage 306
interfaces for objects 305
interpret state 194
Interpret/Compile states . . . 203
interpret/compile: 178

interpretation semantics 82,
177

interpretation
semantics tutorial 52

interpreter - outer 194
interpreter directives 204
Interpreting a

compile-only word 401
Interpreting a compile-only

word, for a local 414
interpreting a word with

undefined interpretation
semantics 401

invalid block number 406
Invalid memory address 399
Invalid memory address,

stack overflow 400
Invalid name

argument, TO 404, 415
invert . 105
invoking a selector 295
invoking Gforth 4
invoking image files 438
ior type description 93
ior values and meaning 409,

415
is . 318
IS . 175
items on the stack after

interpretation 390

J
j . 132

Concept and Word Index 555

K
k . 132
k-alt-mask 257
k-ctrl-mask 257
k-delete 257
k-down . 256
k-end . 256
k-f1 . 257
k-f10 . 257
k-f11 . 257
k-f12 . 257
k-f2 . 257
k-f3 . 257
k-f4 . 257
k-f5 . 257
k-f6 . 257
k-f7 . 257
k-f8 . 257
k-f9 . 257
k-home . 256
k-insert 257
k-left . 256
k-next . 256
k-prior . 256
k-right . 256
k-shift-mask 257
k-up . 256
kern*.fi, relocatability 435
key . 255
key-file 224
key? . 255
key?-file 224
keyboard events,

encoding in EKEY 408
Kuehling, David 425

L
l . 328
l! . 123
labels as values 445
laddr# . 276
LANG – environment

variable 13
last word was headerless 404
late binding 300
latest . 185
latestxt 159
LC_ALL –

environment variable 13
LC_CTYPE –

environment variable 13
LEAVE . 142
leaving definitions, tutorial . . . 40
leaving Gforth 10
leaving loops, tutorial 40
length of a line

affected by \ 406
lib-error 357
lib-sym . 357
Libraries in C interface 354
library interface names 353
license . 11
license for images 431
lifetime of locals 274
line input from terminal 259
line terminator on input 396
link . 318
list . 234
list-size 279
LIST display format 406
Literal . 187
literal tutorial 62
Literals . 186
ll . 330
load . 236
load-cov 341

Concept and Word Index 556

loader for image files 433
loading files at startup 9
loading Forth code, tutorial . . 22
local in

interpretation state 414
local variables, tutorial 31
locale and case-sensitivity . . 394
locals . 267
locals and return stack 115
locals flavours 268
locals implementation 276
locals information on the

control-flow stack 279
locals lifetime 274
locals programming style . . . 274
locals stack 113, 276
locals types 268
locals visibility 269
locals words, ambiguous

conditions 414
locals words,

implementation-defined
options 414

locals words, system
documentation 414

locals, default type 268
locals, Gforth style 267
locals, maximum number in

a definition 414
locals, Standard

Forth style 283
locate 328, 336
lock . 344
long long 444
loop control parameters

not available 404
loops without count 131
loops, counted 132
loops, counted, tutorial 38
loops, endless 131
loops, indefinite, tutorial 36

LOOP . 142
lp! . 117, 277
lp+!# . 276
lp@ . 117
lp0 . 116
lrol . 107
lror . 107
lshift . 105
LSHIFT, large shift counts . . . 404

M
m* . 97
m*/ . 101
m+ . 97
m: . 312
m: usage 302
Macros . 188
macros . 186
macros, advanced tutorial 63
mapping block

ranges to files 410
marker . 333
max . 96
maxalign 120
maxaligned 125
maxdepth-.s 332
maximum depth of file

input nesting 410
maximum number of locals

in a definition 414
maximum number of word lists

in search order 417
maximum size of a

counted string 396
maximum size of a definition

name, in characters 396
maximum size of a

parsed string 396

Concept and Word Index 557

maximum size of
input line 410

maximum string length for
ENVIRONMENT?, in
characters 396

memory access words 121
memory

access/allocation tutorial . . 42
memory alignment tutorial . . . 46
memory block words 126
memory overcommit for

dictionary and stacks 6
memory words 117
memory-allocation

word set 120
memory-allocation words,

implementation-defined
options 415

memory-allocation words,
system documentation 415

message send 295
metacompiler 437, 460
method 295, 313, 319, 320
method conveniences 301
method map 306
method selector 294
method usage 315
methods . 313
methods...end-methods 304
min . 96
mini-oof . 320
mini-oof example 321
mini-oof usage 320
mini-oof.fs, differences to

other models 327
minimum search order 417
miscellaneous words 385
mixed precision

arithmetic words 97
mkdir-parents 227
mod . 99

modf . 99
modf-stage2m 103
modifying >IN 80
modifying the contents of the

input buffer or a string
literal . 401

mods . 99
modulus . 98
most recent definition does not

have a name
(IMMEDIATE) 404

motivation for object-oriented
programming 293

move . 126
ms . 384
MS, repeatability to be

expected 408
Multiple exits from begin . . 135
multitasker 342
Must now be used inside

C-LIBRARY, see C interface
doc . 359

mux . 105

N
n . 328
n, stack item type 92
naligned 292
name . 209
name dictionary 70
name field address 184
name lookup,

case-sensitivity 394
name not defined by VALUE or
(LOCAL) used by TO 415

name not defined by VALUE

used by TO 404
name not found 399

Concept and Word Index 558

name not found (’, POSTPONE,
[’], [COMPILE]) 404

name token 184
name, maximum length 396
name>comp 185
name>compile 185
name>int 185
name>interpret 185
name>string 186
name?int 185
names for defined words 161
needs . 222
negate . 96
negative increment for

counted loops 134
Neon model 325
nested colon definitions 160
new . 318, 321
new[] . 318
newline character

on input 396
newtask . 342
newtask4 342
next-arg 265
next-case 143
NEXT, direct threaded 445
NEXT, indirect threaded 445
nextname 161
NEXT . 142
NFA . 184
nip . 114
non-graphic characters

and EMIT 394
non-relocatable image files . . 434
noname . 159
notation of glossary entries . . 90
notfound 206
nothrow . 148
nt . 331
NT Forth performance 456
ntime . 385

number conversion 199
number conversion - traps

for the unwary 202
number of bits in one

address unit 397
number representation

and arithmetic 397
numeric

comparison words 108
numeric output -

formatted 240
numeric output -

simple/free-format 237
nw . 330

O
object 294, 313, 320
object allocation options 299
object class 299
object creation 299
object interfaces 305
object models,

comparison 325
object-map discussion 306
object-oriented

programming 296, 314
object-oriented

programming motivation . . 293
object-oriented

programming style 299
object-oriented

terminology 294
objects . 296
objects, basic usage 297
objects.fs 296, 314
objects.fs Glossary 310
objects.fs

implementation 306
objects.fs properties 296

Concept and Word Index 559

of . 143
off . 95
on . 95
once . 335
Only . 213
oof . 314
oof.fs 296, 314
oof.fs base class 317
oof.fs properties 315
oof.fs usage 315
oof.fs, differences to

other models 326
open-blocks 234
open-dir 226
open-file 223
open-lib 357
open-path-file 229
open-pipe 261
operating system - passing

commands 384
operator’s terminal

facilities available 405
options on the

command line 4
or . 105
order . 213
orig, control-flow

stack item 139
os-class 219
OS command line

arguments 265
other system documentation,

block words 407
other system

documentation, core
words . 405

outer interpreter 69, 72, 194
outfile-execute 226
output in pipes 15
Output Redirection 225
output to terminal 254

over . 114
overcommit memory for

dictionary and stacks 6
overflow of the pictured numeric

output string 401
overrides 313
overrides usage 298

P
pad . 128
PAD size . 398
PAD use by

nonstandard words 405
page . 254
parameter stack 113
parameters are not of the same

type (DO, ?DO, WITHIN) . . . 404
parent class 295
parent class binding 301
parse . 209
parse area 195
parse-name 209
parse-word 209
parsed string overflow 401
parsed string,

maximum size 396
parsing words 80, 81, 196
pass . 343
patching threaded code 450
path for included 228
path+ . 229
path= . 230
pause . 343
pedigree of Gforth 466
perform . 183
performance of some Forth

interpreters 456
persistent form of

dictionary 431

Concept and Word Index 560

PFE performance 456
pi . 112
pick . 114
pictured numeric output 240
pictured numeric output

buffer, size 398
pictured numeric output

string, overflow 401
pipes, creating your own 261
pipes, Gforth as part of 14
postpone 189, 318
postpone tutorial 61
postpone, 184
POSTPONE applied to [IF] . . . 416
POSTPONE or [COMPILE]

applied to TO 404
Pountain’s

object-oriented model 326
precision 239
precompiled Forth code 431
Preface . 1
previous 212
previous, search

order empty 417
primitive source format 452
primitive-centric

threaded code 447
primitives, assembly

code listing 455
primitives, automatic

generation 452
primitives,

implementation 451
primitives, keeping the TOS

in a register 454
prims2x.fs 452
print . 313
printdebugdata 334
private discussion 304
procedures, tutorial 24

program data space
available 405

programming style, arbitrary
control structures 144

programming style, locals . . . 274
programming style,

object-oriented 299
programming tools 327
programming-tools words,

ambiguous conditions 416
programming-tools words,

implementation-defined
options 415

programming-tools words,
system documentation 415

prompt . 398
pronounciation of words 91
protected 313
protected discussion 304
pthread . 342
pthread_cond_broadcast . . . 347
pthread_cond_signal 347
pthread_cond_timedwait . . . 347
pthread_cond_wait 347
ptr . 318, 319
public . 314

Q
query . 199
quit . 385
quotations 160

Concept and Word Index 561

R
r, stack item type 92
r/o . 223
r/w . 223
r> . 115
r@ . 115
ranges for integer types 397
rdrop . 115
read-dir 226
read-file 223
read-line 224
read-only data

space regions 397
reading from file positions

not yet written 410
rec-body 207
rec-dtick 207
rec-float 207
rec-nt . 207
rec-num . 207
rec-sequence: 208
rec-string 207
rec-tick 207
rec-to . 207
receiving object 295
reciprocal of integer 102
recognize 208
recongizers 206
records . 284
records tutorial 60
recover (old Gforth

versions) 150
recurse . 145
RECURSE appears

after DOES> 403
recursion tutorial 39
recursive 145
recursive definitions 145
Redirection 225
refill . 209

relocating loader 433
relocation at load-time 432
relocation at run-time 432
remainder 98
rename-file 223
repeatability to be expected

from the execution of MS . . 408
REPEAT . 140
replace-word 335
Replication 448
report the words used in

your program 389
reposition-file 225
REPOSITION-FILE, outside the

file’s boundaries 410
represent 242
REPRESENT, results when float

is out of range 411
require . 222
require,

placement in files 426
required 222
reserving data space 118
resize . 121
resize-file 225
restart . 343
restore . 151
restore-input 199
RESTORE-INPUT, Argument

type mismatch 403
restrict 178
result out of range 401
Result out of range 98
Result out of range (on

integer division) 101
return stack 113
return stack and locals 115
return stack dump with
gforth-fast 388

return stack
manipulation words 115

Concept and Word Index 562

return stack space
available 405

return stack tutorial 41
return stack underflow 402
returning from a

definition 145
rol . 107
roll . 114
Root . 214
ror . 107
rot . 114
rounding of

floating-point numbers . . . 411
rp! . 116
rp@ . 116
rp0 . 116
rshift . 106
RSHIFT, large shift counts . . . 404
run-time code

generation, tutorial 63
running Gforth 4
running image files 438
Rydqvist, Goran 425

S
s>d . 97
s>f . 110
s>number? 259
s>unumber? 259
s\" . 247
S" . 247
S", number of

string buffers 410
S", size of string buffer 410
save-buffer 235
save-buffers 235
save-cov 341
save-input 198
savesystem 435

savesystem during
gforthmi 437

scope . 269
scope of locals 269
scoping and classes 303
scr . 234
seal . 214
search . 127
search order stack 211
search order,

maximum depth 417
search order, minimum 417
search order, tutorial 66
search path control,

source files 229
search path for files 228
search-order words,

ambiguous conditions 417
search-order words,

implementation-defined
options 417

search-order words, system
documentation 416

search-wordlist 214
see . 331
see tutorial 25
see-code 331
see-code-range 331
SEE, source and format

of output 415
select . 95
selection control

structures 128
selector 294, 314
selector

implementation, class 307
selector invocation 295
selector invocation,

restrictions 298, 317
selector usage 297
selectors and stack effects . . . 299

Concept and Word Index 563

selectors common to
hardly-related classes 305

self . 318
semantics tutorial 52
semantics, interpretation and

compilation 177
semaphore 344
set-current 211
set-dir . 227
set-order 212
set-precision 239
set-recognizers 208
sf! . 122
sf_, stack item type 93
sf@ . 122
sf@ or sf! used with an address

that is not single-float
aligned 412

sfalign . 120
sfaligned 125
sffield: 293
sfloat% . 292
sfloat+ . 125
sfloats . 125
sh . 384
Shared libraries in C

interface 354
shell commands 384
shift-args 266
sign . 242
silent exiting from Gforth 15
simple defining words 153
simple loops 131
simple-fkey-string 258
simple-see 331
simple-see-range 331
single precision

arithmetic words 96
single-assignment style

for locals 275

single-cell numbers,
input format 199

single-key input 255
singlestep Debugger 338
size of buffer at WORD 397
size of the dictionary and

the stacks 5
size of the keyboard

terminal buffer 398
size of the pictured numeric

output buffer 398
size of the scratch area

returned by PAD 398
size parameters for

command-line options 5
sl@ . 122
SLiteral 188
slurp-fid 225
slurp-file 225
sm/rem . 100
source . 197
source code for exception . . . 331
source code of a word 327
source location of error or

debugging output in
Emacs 425

source-id 198
SOURCE-ID, behaviour when
BLK is non-zero 411

sourcefilename 222
sourceline# 222
sp! . 116
sp@ . 116
sp0 . 116
space . 245
space delimiters 395
spaces . 246
span . 261
speed, startup 16
stability of Gforth 3

Concept and Word Index 564

stack depth changes during
interpretation 390

stack effect 90
Stack effect design, tutorial . . 30
stack effect of DOES>-parts . . 166
stack effect of

included files 221
stack effects of selectors 299
stack empty 402
stack item types 92
stack manipulation tutorial . . 21
stack manipulation words . . . 113
stack manipulation words,

floating-point stack 115
stack manipulation words,

return stack 115
stack manipulations

words, data stack 114
stack overflow 400
stack pointer

manipulation words 116
stack size default 438
stack size, cache-friendly 438
stack space available 405
stack tutorial 20
stack underflow 402
stack-effect

comments, tutorial 25
stacksize 342
stacksize4 342
staged/-divisor 104
staged/-size 103
Standard conformance

of Gforth 392
starting Gforth tutorial 18
startup sequence for

image file 440
Startup speed 16
state - effect on the text

interpreter 81

state-smart words (are
a bad idea) 179

STATE values 398
static . 319
stderr . 225
stderr and pipes 15
stdin . 225
stdout . 225
stop . 343
stop-ns . 343
str< . 127
str= . 127
string larger than pictured

numeric output area (f., fe.,
fs.) . 414

string longer than a counted
string returned by WORD . . 404

string words 250
string-prefix? 127
strings - see

character strings 245
strings tutorial 45
struct . 292
struct usage 287
structs tutorial 60
structure extension 288
structure glossary 291
structure implementation . . . 290
structure naming

convention 289
structure of Forth

programs 85
structure usage 287
structures 284
structures

containing arrays 288
structures containing

structures 288
Structures in Forth200x 292
structures using address

arithmetic 285

Concept and Word Index 565

sub-list? 279
success-color 254
super . 318
superclass binding 301
Superinstructions 448
sw@ . 122
swap . 114
symmetric division 98
syntax tutorial 19
system . 384
system dictionary space required,

in address units 406
system documentation 393
system documentation,

block words 406
system documentation,

core words 393
system documentation,

double words 407
system documentation,

exception words 407
system documentation,

facility words 408
system documentation,

file words 408
system documentation,

floating-point words 411
system documentation,

locals words 414
system documentation,

memory-allocation
words . 415

system documentation,
programming-tools
words . 415

system documentation,
search-order words 416

system prompt 398

T
table . 212
TAGS file . 426
target compiler 437, 460
task . 342
terminal buffer, size 398
terminal input buffer 194
terminal output 254
terminal size 254
terminology for object-oriented

programming 294
text interpreter 69, 72, 194
text interpreter -

effect of state 81
text interpreter -

input sources 197, 198
THEN . 139
third . 114
this . 314
this and catch 307
this implementation 307
this usage 302
ThisForth performance 456
threaded code

implementation 445
threading words 381
threading, direct or

indirect? 447
threading-method 382
throw . 146
THROW-codes used in

the system 407
thru . 236
tib . 198
tick (’) . 181
TILE performance 456
time&date 384
time-related words 384
TMP, TEMP -

environment variable 14

Concept and Word Index 566

to-this . 314
TO on non-VALUEs 404
TO on non-VALUEs and

non-locals 415
tokens for words 181
toupper . 246
TO . 158
TOS definition 73
TOS optimization for

primitives 454
trigonometric operations 111
True . 95
truncation of

floating-point numbers . . . 411
try . 149
tt . 331
tuck . 114
turnkey image files 441
Tutorial . 18
type . 246
types of locals 268
types of stack items 92
types tutorial 28
typewhite 247

U
u*/ . 100
u*/mod . 101
u, stack item type 92
u. 237
u.r . 237
u/ . 99
u/-stage1m 103
u/-stage2m 104
u/mod . 99
u/mod-stage2m 104
u< . 108
u<= . 108
u> . 108

u>= . 108
U+DO . 141
U-DO . 141
ud, stack item type 92
ud. 237
ud.r . 238
ud/mod . 101
UDefer . 344
ul@ . 123
um* . 97
um/mod . 100
umax . 96
umin . 96
umod . 99
umod-stage2m 104
undefined word 399
undefined word, ’, POSTPONE,
[’], [COMPILE] 404

under+ . 96
unexpected end of the

input buffer 402
unlock . 344
unloop . 142
unmapped block numbers . . . 411
UNREACHABLE 271
UNTIL . 139
UNTIL loop 131
unused . 118
unwind-protect 149
update . 235
UPDATE, no current

block buffer 407
updated? 235
upper and lower case 93
use . 234
User . 155
user input device, method

of selecting 396
user output device, method

of selecting 396
user space 155

Concept and Word Index 567

user variables 155
user’ . 344
user-defined

defining words 161
Uses of a word 330
utime . 385
UValue . 344
uw@ . 122

V
Value . 158
value-flavoured locals 268
values . 158
var . 319, 320
Variable 155
variable-flavoured locals 268
variables 154
variadic C functions 350
versions, invoking other

versions of Gforth 10
view . 336
view (called locate

in Gforth) 327
viewing the documentation of a

word in Emacs 425
viewing the source of a

word in Emacs 426
virtual function 294
virtual function table 306
virtual machine 443
virtual machine instructions,

implementation 451
visibility of locals 269
vlist . 214
Vocabularies, detailed

explanation 215
Vocabulary 214
vocs . 215
vocstack empty, previous . . 417

vocstack full, also 417

W
w! . 122
w, stack item type 92
w/o . 223
warning-color 254
WARNING" 152
warnings 152
where . 330
where to go next 88
whereg . 330
WHILE . 140
WHILE loop 131
wid . 211
wid, stack item type 93
Win32Forth performance . . . 456
wior type description 93
wior values and meaning . . . 409
with . 319
within . 108
word 70, 209
word glossary entry format . . 90
word list for

defining locals 277
word lists 210
word lists - example 217
word lists - why

use them? 216
word name too long 399
WORD buffer size 397
WORD, string overflow 404
wordlist 212
wordlists tutorial 66
words 90, 214
words used in your

program 389
words, forgetting 333
wordset . 91

Concept and Word Index 568

write-file 224
write-line 224
wrol . 107
wror . 107
WTF?? . 335
ww . 330

X
x-size . 263
x-width . 264
x\string- 264
xc!+? . 263
xc-size . 263
xc@+ . 263
xchar+ . 263
xchar- . 263

xchar-encoding 265
xemit . 264
xkey . 264
xor . 105
xt . 70, 181
xt, stack item type 93
xt-new . 314
xt-see . 331
XT tutorial 54

Z
zero-length string

as a name 402
Zsoter’s

object-oriented model 326

	Preface
	1 Goals of Gforth
	Stability Goals

	2 Gforth Environment
	Invoking Gforth
	Leaving Gforth
	Help on Gforth
	Command-line editing
	Environment variables
	Gforth files
	Gforth in pipes
	Startup speed

	3 Forth Tutorial
	Starting Gforth
	Syntax
	Crash Course
	Stack
	Arithmetics
	Stack Manipulation
	Using files for Forth code
	Comments
	Colon Definitions
	Decompilation
	Stack-Effect Comments
	Types
	Factoring
	Designing the stack effect
	Local Variables
	Conditional execution
	Flags and Comparisons
	General Loops
	Counted loops
	Recursion
	Leaving definitions or loops
	Return Stack
	Memory
	Characters and Strings
	Alignment
	Floating Point
	Files
	Open file for input
	Create file for output
	Scan file for a particular line
	Copy input to output
	Close files

	Interpretation and Compilation Semantics and Immediacy
	Execution Tokens
	Exceptions
	Defining Words
	Arrays and Records
	POSTPONE
	Literal
	Advanced macros
	Compilation Tokens
	Wordlists and Search Order

	4 An Introduction to Standard Forth
	Introducing the Text Interpreter
	Stacks, postfix notation and parameter passing
	Your first Forth definition
	How does that work?
	Forth is written in Forth
	Review - elements of a Forth system
	Where To Go Next
	Exercises

	5 Forth Words
	Notation
	Case insensitivity
	Comments
	Boolean Flags
	Arithmetic
	Single precision
	Double precision
	Mixed precision
	Integer division
	Two-stage integer division
	Bitwise operations
	Numeric comparison
	Floating Point

	Stack Manipulation
	Data stack
	Floating point stack
	Return stack
	Locals stack
	Stack pointer manipulation

	Memory
	Memory model
	Dictionary allocation
	Heap allocation
	Memory Access
	Address arithmetic
	Memory Blocks

	Control Structures
	Selection
	Simple Loops
	Counted Loops
	Begin loops with multiple exits
	General control structures with case
	Arbitrary control structures
	Programming Style

	Calls and returns
	Exception Handling

	Defining Words
	CREATE
	Variables
	Constants
	Values
	Colon Definitions
	Anonymous Definitions
	Quotations
	Supplying the name of a defined word
	User-defined Defining Words
	Applications of CREATE..DOES>
	The gory details of CREATE..DOES>
	Advanced does> usage example
	Const-does>

	Deferred Words
	Forward
	Aliases

	Interpretation and Compilation Semantics
	Combined Words

	Tokens for Words
	Execution token
	Compilation token
	Name token

	Compiling words
	Literals
	Macros

	The Text Interpreter
	Input Sources
	Number Conversion
	Interpret/Compile states
	Interpreter Directives
	Recognizers

	The Input Stream
	Word Lists
	Vocabularies
	Why use word lists?
	Word list example

	Environmental Queries
	Files
	Forth source files
	General files
	Redirection
	Directories
	Search Paths
	Source Search Paths
	General Search Paths

	Blocks
	Other I/O
	Simple numeric output
	Formatted numeric output
	String Formats
	Displaying characters and strings
	String words
	Terminal output
	Color output
	Color themes

	Single-key input
	Line input and conversion
	Pipes
	Xchars and Unicode

	OS command line arguments
	Locals
	Gforth locals
	Where are locals visible by name?
	How long do locals live?
	Locals programming style
	Locals implementation
	Closures

	Standard Forth locals

	Structures
	Why explicit structure support?
	Structure Usage
	Structure Naming Convention
	Structure Implementation
	Structure Glossary
	Forth200x Structures

	Object-oriented Forth
	Why object-oriented programming?
	Object-Oriented Terminology
	The objects.fs model
	Properties of the objects.fs model
	Basic objects.fs Usage
	The object.fs base class
	Creating objects
	Object-Oriented Programming Style
	Class Binding
	Method conveniences
	Classes and Scoping
	Dividing classes
	Object Interfaces
	objects.fs Implementation
	objects.fs Glossary

	The oof.fs model
	Properties of the oof.fs model
	Basic oof.fs Usage
	The oof.fs base class
	Class Declaration
	Class Implementation

	The mini-oof.fs model
	Basic mini-oof.fs Usage
	Mini-OOF Example
	mini-oof.fs Implementation

	Comparison with other object models

	Programming Tools
	Locating source code definitions
	Locating documentation
	Locating uses of a word
	Locating exception source
	Examining compiled code
	Examining data and code
	Forgetting words
	Debugging
	Assertions
	Singlestep Debugger
	Code Coverage and Execution Frequency

	Multitasker
	Ptheads
	Special User Variables
	Semaphores
	Atomic operations
	Message Queues
	Conditions

	C Interface
	Calling C functions
	Declaring C Functions
	Calling C function pointers from Forth
	Defining library interfaces
	Declaring OS-level libraries
	Callbacks
	How the C interface works
	Low-Level C Interface Words
	Automated interface generation using SWIG
	Basic operation
	Detailed operation:
	Examples

	Migrating from Gforth 0.7

	Assembler and Code Words
	Definitions in assembly language
	Common Assembler
	Common Disassembler
	386 Assembler
	AMD64 (x86_64) Assembler
	Alpha Assembler
	MIPS assembler
	PowerPC assembler
	ARM Assembler
	Other assemblers

	Threading Words
	Passing Commands to the Operating System
	Keeping track of Time
	Miscellaneous Words

	6 Error messages
	7 Tools
	ans-report.fs: Report the words used, sorted by wordset
	Caveats

	Stack depth changes during interpretation

	8 Standard conformance
	The Core Words
	Implementation Defined Options
	Ambiguous conditions
	Other system documentation

	The optional Block word set
	Implementation Defined Options
	Ambiguous conditions
	Other system documentation

	The optional Double Number word set
	Ambiguous conditions

	The optional Exception word set
	Implementation Defined Options

	The optional Facility word set
	Implementation Defined Options
	Ambiguous conditions

	The optional File-Access word set
	Implementation Defined Options
	Ambiguous conditions

	The optional Floating-Point word set
	Implementation Defined Options
	Ambiguous conditions

	The optional Locals word set
	Implementation Defined Options
	Ambiguous conditions

	The optional Memory-Allocation word set
	Implementation Defined Options

	The optional Programming-Tools word set
	Implementation Defined Options
	Ambiguous conditions

	The optional Search-Order word set
	Implementation Defined Options
	Ambiguous conditions

	9 Should I use Gforth extensions?
	10 Model
	11 Integrating Gforth into C programs
	Types
	Variables
	Functions
	Signals

	12 Emacs and Gforth
	Installing gforth.el
	Emacs Tags
	Hilighting
	Auto-Indentation
	Blocks Files

	13 Image Files
	Image Licensing Issues
	Image File Background
	Non-Relocatable Image Files
	Data-Relocatable Image Files
	Fully Relocatable Image Files
	gforthmi
	cross.fs

	Stack and Dictionary Sizes
	Running Image Files
	Modifying the Startup Sequence

	14 Engine
	Portability
	Threading
	Scheduling
	Direct or Indirect Threaded?
	Dynamic Superinstructions
	DOES>

	Primitives
	Automatic Generation
	TOS Optimization
	Produced code

	Performance

	15 Cross Compiler
	Using the Cross Compiler
	How the Cross Compiler Works

	A Bugs
	B Authors and Ancestors of Gforth
	Authors and Contributors
	Pedigree

	C Other Forth-related information
	D Licenses
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	GNU GENERAL PUBLIC LICENSE

	Word Index
	Concept and Word Index

