
e4thcom-0.8.5.2 A Terminal for Embedded Forth Systems

Copyright (C) 2013-2023 Manfred Mahlow

e4thcom for Linux and OSX is a terminal program for embedded Forth Systems.

64 and 32 Bit Linux systems are supported (X86 and Raspberry/Raspbian).

64 Bit OSX is new and still in status TESTING.

The e4thcom command line history and TAB-completion is based on ANSI Escape Codes. Start e4thcom with --rln option, to use the
readline library, if the OSX terminal emulator does not fully support ANSI Escape Codes.

Default is Linux X86_64. Recompiling for the other systems is very easy.

Please read and follow the instructions given in the files e4thcom-x.y.z/README and e4thcom-x.y.z/src/README.

Feature List :

e4thcom-0.8.5.2:

• First release for Linux and OSX with source for e4thcom and MINFORTH Plus.
• Plug-in for 328eForth added (-t 328eforth and -t 328eforth-xas)

e4thcom-0.8.5:

Terminal directives added for conditional execution of short Target Forth phrases or of selected terminal
directives:

#ifdef <name> ...

If the word <name> is found in the targets actual dictionary search order, then the rest of the line is executed
as a terminal directive or as Target Forth code. Otherwise its ignored.

#ifdef <name> #include <file>
#ifdef <name> #require <file>
#ifdef <name> \res ...
#ifdef <name> \\
#ifdef <name> ...

#ifndef <name> ...

If the word <name> is not found in the targets actual dictionary search order, then the rest of the line is
executed as a terminal directive or as Target Forth code. Otherwise its ignored.

#ifndef <name> #include <file>
#ifndef <name> \res ...
#ifndef <name> \\
#ifndef <name> ...

e4thcom-0.8.4 :

• Baudrates greater than B115200 are supported now:

B1200 , B2400 , B4800 , B9600 , B19200 , B38400 , B57600 , B115200 , B230400, B460800 , B500000 ,
B576000 , B921600 , B1000000

• The #include directive accepts longer file names now (max. 128 chars)

• Plug-in for Mecrisp-Quintus added (-t mecrisp-qs)

e4thcom-0.8.2 :

Seite 1 von 10Samstag, 29.04.2023, 06:00:03 nachm.

• Readline support added (see -option --rln) (see Starting e4thcom and Buffered Command Line)

• Command line buffering can be disabled/enabled with the terminal directive \^ (see Buffered Command Line)

• Plug-in swapforth-j1sc added, see https://github.com/SteffenReith/J1Sc

e4thcom-0.8.1 :

• recompilable native 64|32 Bit application (64 Bit support added in 0.7.0, Forth code base changed in 0.8.0)
• invers display mode supported (new since 0.6.2 : see --idm , default is normal display mode)
• editable command line buffer with history and tab selection (new since 0.5.4 : see \index)

∘ (new since 0.6.2 : [Home] [End] [Shift]+[TAB] keys supported)

• editor interface for debugging (new since 0.5.4 : see #edit and #ls)
• data transmission via serial line (UDP network connection only with 0.5.3)
• conditional and unconditional uploading of source code

∘ full- and half-duplex since 0.5.5 : see --hdm (option changed from --half-duplex to --hdm in 0.8.0)

∘ adjustable path for source code file look-up (new since 0.6.3 , see Uploading of Source Code Files: -p option)

• plug-ins (Forth Source Code files) for
∘ target specific configuration

‣ anyForth

‣ 430CamelForth

‣ 430eForth

‣ 4e4th

‣ AmForth

‣ Mecrisp

‣ Mecrisp-Stellaris

‣ noForth

‣ stm8eForth

∘ cross assembler and cross disassembler
‣ MSP430 (assembler and disassembler)

‣ AmForth (assembler)

• loading target specific resource identifiers (register and bit identifiers) from Forth files (.efr-files)
∘ path for file look-up changed since 0.6.3 , see Using Resource Files

Forth on Embedded Systems

Forths interactivity is an important advantage on embedded systems. Any simple terminal program can be
used to get in touch with the system and explore its structure and capabilities.

But - as soon as the first program is written and ready for testing - an easy way to upload the source code files
is missing. A tool to overcome this deficiency is the e4thcom terminal program.

The e4thcom Terminal

e4thcom is a terminal program for the Linux OS (since 2013 also for OSX). It sends terminal input without a
local echo via serial line (or UDP 0.5.3 only) to the target (Forth System) and displays characters received from
the target in the terminal window. This is the terminal-mode of the program.

Entering the character '#' or '\' as the first one of a new line activates the control-mode of the program.
Terminal input is then not forwarded to the target system but catched until the enter key is pressed and is
then interpreted as a terminal directive.

Uploading of Source Code Files

Two terminal directives are defined for uploading of source code files. They are modeled after the
corresponding words include and require from the Forth Standard and named #include and #require. Both
expect to get the name of a source code file as the only parameter:

#include <filename> \ unconditional uploading

#require <filename> \ conditional uploading

Seite 2 von 10Samstag, 29.04.2023, 06:00:03 nachm.

Both directives can also be used in source code files, one directive per line, the rest of the line is silently
discarded.

When directives are entered at the terminal, the abbreviations #i and #r can be used.

The file look-up is done at the path cwd:cwd/dir1:cwd/dir2:cwd/dir3 . CWD is the directory, that was
the active one (the current working directory) at program start. The default path is cwd:cwd/mcu:cwd/
target:cwd/lib . The related concept is, to store

∘ project-specific Forth code in cwd
∘ hardware-specific Forth code in cwd/mcu
∘ target-specific Forth code in cwd/target
∘ target-independent Forth code in cwd/lib.

The path can be changed with the -p option at program start (see Starting e4thcom) or in the target specific
plug-in files (<target>.efc).

Unconditional Uploading

Source code files are read line by line and the text is interpreted as a terminal directive or uploaded to the
target.

After sending a line of source code to the target, the terminal waits for the target to process the line and
return with a message. If no error occurres, the next line is read from the source. Otherwise uploading is
aborted with an error message.

Comment lines starting with a '\' char are not uploaded but only displayed in the terminal window. The same is
true for multi-line comments inside curly braces.

When the end of a source code file is reached, the file is closed and control is given back to the calling level.
Finally, when the last file is closed, the terminal mode is activated again.

Conditional Uploading

Before uploading a file, the terminal checks, whether a word, that equals the file name, already exists in the
current search order of the targets dictionary. The upload directive is ignored, if that is the case. Otherwise
the file is uploaded.

After uploading a file, the terminal again checks if now a word exists in the target dictionary, that equals the
file name. If that is not the case, a NOOP-Word with that name is created in the target dictionary.

With this approach, the number of dictionary entries for file names can be minimized, by using - whenever
adequate - the name of a prominent word, defined in a file, as the name for that file.

Canceling Uploading of Source Code

Uploading can be canceled by pressing the TAB key on the keyboard. (before 0.5.4 ^B was used.)

Please be aware, that the target may be in compile mode when canceling a running upload. Typing [[Enter] will then bring the
target back into interpret mode.

Data Transmission Modes

Since version 0.5.5 two data transmission modes are supported, full- and half-duplex. Default is full-duplex. To
use half-duplex start e4thcom with the --hdm option (was --half-duplex before 0.8.0).

Up to version 0.5.3 only half-duplex was implemented (uploading a byte and waiting for the echo). That worked fine in general but
was unacceptable slow with the MSP430 FR5969 Launchpad. This unit has a more sophisticated USB interface and only works with
acceptable transmission speed if block-transfer is used to upload source code.

There may be targets or transmission channels, that are not capable to handle full-duplex data transmission
with the selected transmission speed. Then try the half-duplex transmission mode.

Error Editing

Seite 3 von 10Samstag, 29.04.2023, 06:00:03 nachm.

In e4thcom-0.5.4 the terminal directive #edit <file-name> [Enter] was added to open a source code
file in an external editor of your choice.

If uploading is aborted with an error message, typing #edit [Enter] or #e [Enter] at the command line
will open the uploaded file with the cursor placed in the line that raised the error.

The editor command is defined in the config file .e4thcom-x.y.z . Change it to your needs. Search order for
the file is cwd:cwd/dir1:e4thcom-dir .

To list the files available in the current working directory (project directory) the directive #ls
[OPTION]... [FILE]... can be used. It executes the Linux command ls (see the ls man page).

Buffered Command Line

Command line input is no longer directly send to the target but buffered until the [Enter] key is pressed. This
means it is no longer possible to send a single char to the target without a trailing CR. If you need to send a
single char without a CR, enter it with a leading '\' char in an empty command line, e.g. \x [Enter] sends
the char x to the target without a trailing CR.

Command line buffering can be switched OFF and ON on the e4thcom command line by entering \^ [Enter] .

Two buffer modes are supported :

• Readline support is new in 0.8.2 and can be enabled by starting e4thcom with the command line option --rln .

• Default is the mode that was implemented in 0.5.4/0.6.2. It's described in the following.

Command Line Editing

The following keys are supported and expected to work on most keyboards:

[Backspace] [Left] [Right] [Home] [End] [UP] [Down] [Shift]+[TAB] clears the command line

Command Line History

e4thcom uses an internal history buffer of limited size. Command line input is added to that buffer, throwing
out oldest entries, if required. A limited TAB completion (TAB selection) is supported. Pressing the TAB key
displays those words from the history, that start with the first character in the command line.

Pressing [Shift]+[TAB] key removes all chars from the command line buffer.

The command line history can be extended from within source code files, using the terminal directive \index:

\index phrase1 phrase2 ... phraseN

The directive must be the first word in a line. Phrases must be preceded with two spaces as separators. A
phrase can be a word or a sequence of space separated words.

Installing e4thcom

e4thcom is distributed as a tar.gz archive. For testing or as a user without admin rights unpack the archive in a
directory of your choice, e.g. in your home directory or on the desktop. You will then find the e4thcom binary
and related files in a new directory named e4thcom-x.y.z.

Since version 0.8.0 e4thcom is distributed as a native X86 64Bit application, but it's very easy to recompile it for
a 32 Bit Linux OS. You will find the required information in the enclosed README files.

Please be aware, that absolute filenames are restricted to max. 128 chars (bytes) and relative filenames
(relative to the e4thcom directory or to a project directory) are restricted to 32 chars, the max. size of word
names in Forth.

On the Raspberry B please use the half-duplex mode (see option --hdm) if full-duplex does not work properly

Seite 4 von 10Samstag, 29.04.2023, 06:00:03 nachm.

(hangs during upload).

As an admin you can make e4thcom available to all system users by unpacking the archive to the /opt
directory, changing owner and group with chown -R root:root /opt/e4thcom-x.y.z and creating a
link named e4thcom in /usr/local/bin to the corresponding file in the /opt/e4thcom-x.y.z directory.

Please be aware that e4thcom users need to have access to the serial devices. In general this requires that
they are members of the groups plugdev, dialout and dip.

You can check this with the command cat /etc/group | grep user [Enter] .

To add a user to a group you can use the command sudo adduser user group [Enter].

Starting e4thcom

To start the e4thcom terminal program, open a terminal window in a (project) folder of your choice and enter
the command

/path/to/e4thcom-x.y.z/e4thcom [options]

The following options are supported:

-t [target] The target system to connect to. Loads the plug-in file target.efc from the
e4thcom directory at program start. See the chapter Plug-Ins which targets

 are supported.

-p [dir1:dir2:dir3] Set the path cwd:cwd/dir1:cwd/dir2:cwd/dir3 for Forth source code
 look-up. Default is cwd:cwd/mcu:cwd/target:cwd/lib .

cwd = current working directory at program start

-d [device] The serial device, e.g. ttyS0, ttyUSB0, ttyACM0 ... for a serial line connection
or ip-address:port for an UDP connection (only 0.5.3)

-b [baudrate] The baudrate for a serial line connection. Supported values are:
 B1200, B2400, B4800, B9600, B19200, B38400, B57600, B115200,
 B230400,B460800,B500000,B576000,B921600,B1000000

-h Displays the terminals help text.

--hdm Halve-duplex data transmission mode. Default is full-duplex.

--idm Invers display mode, black or colored letters on white background.
Default: Normal display mode, white or colored letters on black background.

--rln Enable readline command line buffering

The connection to a target system via a serial line is established during the program start. This may fail if the chosen device is not
available or used by another process (e.g. by a modem manager). The program is then terminated with an error message. After fixing the
cause of failure or waiting for the modem manager to give up, a successful start of the program should be possible.

Target Connections via UDP (only e4thcom-0.5.3)

From the Forth-Tagung in April 2015 I came back with a TI Tiva Connected Launchpad with TM4C1294NCPDT, Mecrisp-Stellaris and
the Ethernet driver contributed by Bernd Paysan. This made me extend the e4thcom terminal to support communication vai UDP.

The terminals UDP mode is enabled by assigning an IP-Address and a port number to the -d option (see section Starting e4thcom),
e.g. :

-d ip-address:port e.g.: -d 192.168.2.107:4201

By starting two e4thcom instances, it's possible now to connect to a TMC4.... via serial line and UDP at the same time.

Closing e4thcom

To close the terminal enter \ [Enter] at the command line (in versions <0.5.4 the esc key was used.).

Seite 5 von 10Samstag, 29.04.2023, 06:00:03 nachm.

Plug-Ins

Target systems are different concerning the messages (the prompts) they return after processing a line of
uploaded code.

Up to version 0.3.4 e4thcom was split in an executable file and a number of target specific image files, named
after the targets. Starting with version 0.4 there is only one image file for all targets. The target specific code
was factored out and is now loaded as a plug-in at program start. The plug-ins are small Forth Source Code
Files. So it's easy to add support for not yet supported targets.

The current e4thcom release comes with the following plug-ins:

anyforth.efc \ dump uploader without any error checking, only unconditional
 uploading with #i[nclude] <file name> is supported

380eforth.efc \ generic plug-in for the 328eForth for Arduino Uno by C.-H. Ting
380eforth-xas.efc \ generic + ATmega cross-assembler ²)

430camelforth.efc \ generic CamelForth plug-in
430camelforth-xas.efc \ generic + MSP430 cross-assembler and -disassembler ¹)

430eforth.efc \ generic 430eForth plug-in
430eforth-xas.efc \ generic + MSP430 cross-assembler and -disassembler ¹)

4e4th.efc \ generic 4e4th plug-in
4e4th-xas.efc \ generic + MSP430 cross-assembler and -disassembler ¹)

amforth.efc \ generic amForth plug-in
amforth-xas.efc \ generic + ATmega cross-assembler ²)

mecrisp.efc \ generic Mecrisp plug-in
mecrisp-msp430xas.efc \ generic + MSP430 cross-assembler and -disassembler ¹)

mecrisp-qs.efc \ generic Mecrisp-Quintus plug-in

mecrisp-st.efc \ generic Mecrisp-Stellaris plug-in

noforth.efc \ generic noForth plug-in
noforth-xas.efc \ generic + MSP430 cross-assembler and -disassembler ¹)

stm8ef.efc \ generic stm8eForth plug-in (new since 0.6.2)

swapforth-j1sc.efc \ generic swapforth plug-in (new since 0.8.2)

¹) The cross-assembler and -disassembler are based on code from noForth.
²) The cross-assembler is based on the amforth ATmega assembler from Lubos Pekny. (Needs further testing.)

The reliability of the plug-ins depends on the targets prompts (and of course on my ideas, to evaluate them).
Not all are perfect yet.

The stm8ef plug-in (tested with V2.2.15)

uses text analysis and the control char ^BEL (07):

∘ ' ok^NL' or ' OK^NL' received: It's assumed that the target is ready for input. The terminal uploads the
next line.
∘ '^BEL^NL' received: A target error occurred. The terminal stops uploading.

The noforth plug-in (tested with noForth C/V 141218 ... 170222)

works perfect whith ACK/NAK control chars enabled on the target (OK HEX 8000 TO OK FREEZE).

Seite 6 von 10Samstag, 29.04.2023, 06:00:03 nachm.

∘ ^ACK (06) received: noForth is ready to receive a new line. Terminal sends the next line.
∘ ^NAK (15) received: noForth is ready to receive a new line but there was an error. Terminal stops
uploading.
∘ No ^ACK/^NAK received: noForth is busy or waiting for user input. Terminal waits for ^ACK/^NAK.
Terminal imput is send to the target while waiting.

The mecrisp plug-ins (tested with Mecrisp 1.x ... 2.x , Mecrisp-Stellaris 2.1.1 ... and Mecrisp-Quintus 0.2.9)

use a combination of timeout detection and text analysis:

∘ ' ok.^NL' received : It's assumed that mecrisp is ready to receive a new line. Terminal sends the next
line.
∘ Timeout after 'message^NL' : It's assumed that mecrisp is ready to receive a new line, but an error
occured. The terminal stops uploading.
∘ Timeout without 'message^NL' : It's assumed that mecrisp is busy or waiting for user input. The
terminal waits for ^NL, terminal input is send to the target while waiting.

The plugins are not perfect but work fine. It's not very likely to meet remaining ambiguous conditions.

The amforth plugin (tested with amforth 4.9 , 5.1, 5.5, 6.0)

 uses a combination of timeout detection and text analysis:

∘ ' ok' received : It's assumed that amforth is ready to receive a new line. The terminal sends the next
line.
∘ ' ^CR^NL' received : It's assumed that amforth is ready to receive a new line but an error occurred. The
terminal stops uploading.
∘ Timeout : It's assumed that amforth is busy or waiting for user input. The terminal waits for ' ok' or '
^CR^NL'. Terminal input is send to the target while waiting.

Again, this plugin is not perfect but works fine, as long as the strings, used for error and ok detection, are not
send by your code, while the target is still busy.

The 4e4th plug-in (tested with 4e4th 0.34 and debug version 150925)

is based on text analysis only:

∘ '?^XON^CR^NL' or '?^CR^NL^XON^ CR^NL' received : It's assumed that 4e4th is ready to receive a
new line but an error occurred. The terminal stops uploading.
∘ '^XON^CR^NL' without a leading '?' received : It's assumed that 4e4th is ready to receive a new line. The
terminal sends the next line.

This plugin has the following restriction:

∘ Error messages created with abort", that need to be detected while uploading, must be terminated
with a question mark.

The 430CamelForth plug-in (tested with 430CamelForth v0.5)

is based on timeout detection and text analysis. It's not perfect but close to. An ambiguous condition exists, if
the target waits for user input during uploading. Then uploading is aborted.

The 430eForth plug-in (tested with 430eForth v4.3)

is based on timeout detection and text analysis. It's not perfect but close to. An ambiguous condition exists, if
the target waits for user input during uploading. Then uploading is aborted. Error messages should end with a
'?' char.

Finally it's safe to say that the most reliable plugin is that for noForth. And it is the most simple one. In other
words, it would be very nice to have an ACK/NAK option in the other Forth systems too.

Seite 7 von 10Samstag, 29.04.2023, 06:00:03 nachm.

Cross Assembling

Starting with version 0.4 e4thcom comes with a cross assembler interface. A target specific cross assembler,
written in Forth, can be included by the target specific plug-in at program start. Then the terminal interprets
the words code and end-code, label, x[and \xas as terminal directives when uploading source code from files.

code and end-code

A line of source code that starts with the word code is uploaded to the target and afterwards the terminals
cross-assembler mode is enabled. The next lines are then assembled by the terminals cross-assembler and the
resulting code is send to and comma-compiled at the target, until the word end-code is found in the source.
Then the terminals cross-assembler mode is disabled again and the string end-code is send to the target. The
words code and end-code must be defined in the targets dictionary but do not need to have any e4thcom
related properties.

code led1.on (--)
 BIT0 # P1OUT & .b bis next end-code

label LB[01,05]

Assign the targets next free code address to one of the global labels LB01...LB05, which are predefined in the
cross assembler dictionary, e.g.:

code min (n1 n2 -- n1|n2)
 sp)+ w mov tos w cmp label LB01 >? if, w tos mov then, next

end-code

code max (n1 n2 -- n1|n2)
 sp)+ w mov w tos cmp LB01 jmp end-code

\xas

A line of source code, that starts with \xas is not uploaded to the target but interpreted by the cross
assembler (the terminals internal Forth interpreter). This can be used to extend the cross assembler, e.g. to
add short macro definitions or to load a file with target specific resource identifiers, e.g.:

\xas MCU: name Loads the file name.efr.

The search order to find name.efr is cwd:cwd/dir1:e4thcom-dir.

x[..........]

A new feature of the cross assembler interface was added to version 0.5. The cross assembler can be
temporarily disabled to send text to the target and read a cell-sized value back. This is required to write code
that needs to access data or words defined at the target, e.g.:

#require code

\xas MCU: MSP430G2553

 \xas : dup, (--) tos sp -) mov ; \ some macros
\xas : push, (x --) dup, tos mov ; \

code base@ (-- u)
x[base] & push, next end-code

The number base in the cross assembler mode is hex. The cross assembler is case sensitive. I prefere lower
case for operators and upper case for register and bit identifiers.

Cross Disassembling

Seite 8 von 10Samstag, 29.04.2023, 06:00:03 nachm.

A target specific cross disassembler can be included by a target specific plug-in. Then the terminal directive
#das (abbr. #d) is supported at the terminals command line.

#das name
Starts disassembling name (at its xt).

#das
Reads an address from the targets TOS and starts disassembling at this address.

Using Resource Files

Modern MCUs have lots of peripheral modules. A host of parameters and descriptors is required to access,
configure and use this modules. e4thcom can load resource data from Forth files, to be used in cross
assembler definitions or to be exported to the target:

\res

A line of source code, that starts with \res is not uploaded to the target but interpreted by the terminals
internal Forth interpreter. This can be used to define resource descriptors in the terminals dictionary or to load
some from target specific resource files.

\res <single-number> equ name
Creates or updates the resource descriptor name (a constant) in the terminals dictionary.

\res export name1 name2 ... nameN
Exports resource descriptors (as unique constants) from the terminals dictionary to the target, if they do not
already exist in the current search order of the target.

\res MCU: name
Loads the (resource) file name.efr , e.g. \res MCU: MSP430G2553 .

The search order to find name.efr is cwd:dir1:e4thcom-dir. dir1 defaults to mcu (see Starting e4thcom, -p
option).

With a little help ...

Up to version 0.5.3 e4thcom did not have a command line history and did not support extended command line
editing. It was intentionally designed minimalistic because I used it with a GTK+ GUI called ForthBox which
added the missing features.

Recently I noticed, that the ForthBox can not be used on 64 Bit Linux Systems because it depends on the 32 Bit
libvte, which is not available in the repositories of the current 64 Bit Linux distributions. So I decided not to
bundle the ForthBox any longer with the e4thcom terminal. You can still use the one from e4thcom-0.5.3 (on
32 Bit systems) and I'll probably make the latest ForthBox version available as a separate release, if anyone is
interested in.

What's left to do :

• Adding device locking to prevent concurrent device access from different processes. If another process uses
the same device as the e4thcom terminal, it may snap away received chars so that the communication with the
target will not work properly.

• The problem here seems to be, that not all programs, that use serial devices, use device locking or don't do it the
same way.

• Adding more targets and cross assemblers. You can do it yourself and/or contribute. The new plug-in
structure should make it easy. The plug-in files and the cross assembler file that come with this release should be
useful examples.

Annotation:

The e4thcom distribution comes with ABSOLUTELY NO WARRANTY. It is free software under the terms of the

Seite 9 von 10Samstag, 29.04.2023, 06:00:03 nachm.

GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or
any later version, see http://www.gnu.org/licenses .

Questions, error notes and suggestions for improvements or additional target plug-ins are welcome and can
be forwarded to firstname dot lastname @ forth-ev.de .

e4thcom was implemented with MINFORTH Plus, a MINFORTH derivative. Thanks to Andreas Kochenburger for creating MINFORTH,
which was a great starting point to create MINFORTH Plus.

Thanks to Albert Nijhof and Willem Ouwerkerk for supporting me to make e4thcom ready for noForth and for agreeing that the noForth
cross assembler can be distributed with e4thcom.

Last Revision: MM-230429

Seite 10 von 10Samstag, 29.04.2023, 06:00:03 nachm.

