
e4thcom - Terminal 0.5.3 for Embedded Forth Systems

Copyright (C) 2013-2015 Manfred Mahlow

Abstract

e4thcom for the Linux OS (32 Bit executables for X86 and Raspberry/Raspbian) is a terminal
program for embedded Forth Systems. The current release 0.5.3 supports

• data transmission via serial line or UDP network connection
• conditional and unconditional uploading of source code
• cross-assembling and cross-disassembling of source code
• loading target specific resource identifiers (register and bit identifiers) from Forth files
• plug-ins (Forth Source Code files) for target specific configuration

Forth on Embedded Systems

Forths interactivity is an important advantage on embedded systems. Any simple terminal
program can be used to get in touch with the system and explore its structure and capabilities.

But - as soon as the first program is written and ready for testing - an easy way to upload the
source code files is missing. A tool to overcome this deficiency is the e4thcom terminal program.

The e4thcom Terminal

e4thcom is a terminal program for the Linux OS. It sends terminal input without a local echo via
serial line or UDP to the target (Forth System) and displays characters received from the target in
the terminal window. This is the terminal-mode of the program.

Entering the character # as the first one of a new line activates the control-mode of the program.
Terminal input is then not forwarded to the target system but catched until the enter key is pressed
and is then interpreted as a terminal directive.

Terminal Direktives

Terminal directives temporarily change the operational mode of the terminal. Two directives are
defined for uploading of source code files. They are modelled after the corresponding words include
and require from the Forth Standard and named #include and #require. Both expect to get the
name of a source code file as the only parameter:

 #include <filename> \ unconditional uploading

 #require <filename> \ conditional uploading

Both directives can also be used in source code files, one directive per line, the rest of the line is
silently discarded.

The file name lookup is done at the path cwd:cwd/target:cwd/mcu:cwd/lib. cwd is the directory,
that was the active one (current working directory) at program start. The underlaying concept is, to
store project-specific source code in the cwd directory, target-forth-specific in cwd/target,
hardware-specific in cwd/mcu and target-, mcu- and project-independent code in cwd/lib.

When directives are entered at the terminal, the abbreviations #i and #r can be used.

Uploading of Source Code

Source code files are read line by line and the text is interpreted as a terminal directive or
uploaded to the target.

Page 1 of 8Friday 13/11/2015, 16:54:00

After sending a character to the target, the terminal waits for the echo and displays it in the
terminal window. The transmission is aborted with an error message, if no echo is received.

At the end of a line, the terminal waits for the target to process that line and return with a
message. If no error occured, the next line is read from the source. Otherwise the transmisson is
aborted with an error message.

Comments starting with a \ char - are not uploaded but only displayed in the terminal window. The
same is true for multi-line comments inside curly braces.

When the end of a source code file is reached, the file is closed and control is given back to the
calling level. Finally, when the last file is closed, the terminal mode is activated again.

Conditional Uploading of Source Code

Before uploading a file, the terminal checks, whether a word, that equals the file name, already
exists in the targets dictionary. The upload directive is ignored, if that is the case. Otherwise the
file is uploaded.

After uploading a file, the terminal again checks if now a word exists in the target dictionary, that
equals the file name. If that is not the case, a NOOP-Word with that name is created in the target
dictionary.

With this approach, the number of dictionary entries for file names can be minimized, by using -
whenever adequate - the name of a prominent word, defined in a file, as the name for that file.

Installing e4thcom

e4thcom is distributed as a tar.gz archive. For testing or as a user without admin rights unpack the
archive in a directory of your choise, e.g. in your home directory or on the desktop. You will then
find the e4thcom binary and related files in a new directory named e4thcom-x.y.z. The e4thcom
binary in this directory is the one for X86 Linux Systems.

Please be aware, that absolute path- and filenames are restricted to 64 chars (bytes) and relative
path- and filenames (relative to the e4thcom directory or to a project directory) are restricted to 32
chars (bytes).

When installing e4thcom on a Raspberry with Raspbian OS please copy the binary from the
Raspbian subdirectory to the e4thcom directory.

As an admin you can make e4thcom available to all system users by unpacking the archive to the /
opt directory, changing owner and group with chown -R root:root /opt/e4thcom-xyz and
creating links named e4thcom and forthbox in /usr/local/bin to the corresponding files in the /opt/
e4thcom-xyz directory.

Starting e4thcom

To start the e4thcom terminal program, open a terminal window in a (project) folder of your choice
and enter the command

/path/to/e4thcom [options]

The following options are supported:

-t [target] The target system to connect to. Loads the plug-in file target.efc from the
 e4thcom directory at program start. See the chapter Plug-Ins which targets
 are supported.

-d [device] The serial device, e.g. ttyS0, ttyUSB0, ttyACM0 ... for a serial line connection
 or ip-address:port for an UDP connection

Page 2 of 8Friday 13/11/2015, 16:54:00

-b [baudrate] The baudrate for a serial line connection.
 Supported values are:
 B1200, B2400, B4800, B9600, B19200, B38400, B57600, B115200

-h Displays the terminals help text.

The connection to a target system via a serial line is established during the program start. This
may fail if the chosen device is not available or used by another process (e.g. by a modem
manager). The program is then terminated with an error message. After fixing the cause of failure
or waiting for the modem manager to give up, a successful start of the program should be possible.

Target Connections via UDP (Status: testing)

From the Forth-Tagung in April 2015 I came back with a TI Tiva Connected Launchpad with
TM4C1294NCPDT, Mecrisp-Stellaris and the Ethernet driver contributed by Bernd Paysan. This
made me extend the e4thcom terminal to support communication vai UDP.

The terminals UDP mode is enabled by assigning an IP-Address and a port number to the -d option
(see section Starting e4thcom), e.g. :

-d ip-address:port e.g.: -d 192.168.2.107:4201

By starting two e4thcom instances, it's possible now to connect to a TMC4.... via serial line and
UDP at the same time.

Plug-Ins

Target systems are different concerning the messages (the prompts) returned after processing a
line of uploaded code.

Up to version 0.3.4 e4thcom was split in an executable file and a number of target specific image
files, named after the targets. Starting with version 0.4 there is only one image file for all targets.
The target specific code was factored out and is now loaded as a plug-in at program start.

The target specific plug-ins are small Forth Source Code Files so that support for other targets can
be easily added by experienced Forth Users.

The current e4thcom release comes with the following plug-ins:

noforth.efc \ generic noForth plug-in
noforth-xas.efc \ generic + MSP430 cross-assembler and -disassembler ¹)

mecrisp.efc \ generic Mecrisp plug-in
mecrisp-st.efc \ generic Mecrisp-Stellaris plug-in

amforth.efc \ generic amForth plug-in
amforth-xas.efc \ generic + ATmega cross-assembler ²)

4e4th.efc \ generic 4eth plug-in
4e4th-xas.efc \ generic + MSP430 cross-assembler ¹)

¹) The cross-assembler and -disassembler are based on code from noForth.
²) The cross-assembler is based on the amforth ATmega assembler from Lubos Pekny. (Needs
further testing.)

The reliability of the plugins depends on the targets prompts (and of course on my ideas, to
evaluate them). Not all are perfect yet.

The noforth plug-in (testet with noForth C/V 141218 ... 151006)

Page 3 of 8Friday 13/11/2015, 16:54:00

works perfect whith ACK/NAK control chars enabled on the target (OK HEX 8000 TO OK FREEZE).

∘ ^ACK (06) received: noForth is ready to receive a new line. Terminal sends the next line.

∘ ^NAK (15) received: noForth is ready to receive a new line but there was an error. Terminal
stops uploading.

∘ No ^ACK/^NAK received: noForth is busy or waiting for user input. Terminal waits for ^ACK/
^NAK. Terminal imput is send to the target while waiting.

The mecrisp and mecrisp-stellaris plug-ins (testet with Mecrisp 1.x ... 2.x and Mecrisp-
Stellaris 2.1.1 for TM4C1294)

use a combination of timeout detection and text analysis:

∘ ' ok.^NL' received : It's assumed that mecrisp is ready to receive a new line. Terminal
sends the next line.

∘ Timeout after 'message^NL' : It's assumed that mecrisp is ready to receive a new line, but
an error occured. The terminal stops uploading.

∘ Timeout without 'message^NL' : It's assumed that mecrisp is busy or waiting for user
input. The terminal waits for ^NL, terminal imput is send to the target while waiting.

The plugins are not perfec but work fine. It's not very likely to meet the existing ambiguous
conditions.

The amforth plugin (testet with amforth 4.9 , 5.1, 5.5, 6.0)

 uses a combination of timeout detection and text analysis:

∘ ' ok' received : It's assumed that amforth is ready to receive a new line. The terminal sends
the next line.

∘ ' ^CR^NL' received : It's assumed that amforth is ready to receive a new line but an error
occured. The terminal stops uploading.

∘ Timeout : It's assumed that amforth is busy or waiting for user input. The terminal waits for
' ok' or ' ^CR^NL'. Terminal imput is send to the target while waiting.

Again, this plugin is not perfect but works fine, as long as the strings, used for error and ok
detection, are not send by your code, while the target is still busy.

The 4e4th plug-in (testet with 4e4th 0.34 and debug version 150925)

is based on text analysis only:

∘ '?^XON^CR^NL' or '?^CR^NL^XON^ CR^NL' received : It's assumed that 4e4th is ready
to receive a new line but an error occured. The terminal stops uploading.

∘ '^XON^CR^NL' without a leading '?' received : It's assumed that 4e4th is ready to receive a
new line. The terminal sends the next line.

This plugin has the following restriction:

∘ Error messages created with abort", that need to be detected while uploading, must be
terminated with a question mark.

Page 4 of 8Friday 13/11/2015, 16:54:00

Finally it's safe to say that the most reliable plugin is that for noForth. And it is the most simple
one. In other words, it would be very nice to have the ACK/NAK option in the other forth systems
too.

Cross Assembling

Starting with version 0.4 e4thcom comes with a cross assembler interface. A target specific cross
assembler, written in Forth, can be included by the target specific plugin at program start. Then
the terminal interprets the words code and end-code, label, x[and \xas as terminal directives.

code and end-code

A line of source code that starts with the string code is uploaded to the target and afterwards the
terminals cross-assembler mode is enabled. The next lines are then assembled by the terminals
cross-assembler and the resulting code is send to and comma-compiled at the target, until the
string end-code is found in the source. Then the terminals cross-assembler mode is disabled again
and the string end-code is send to the target. The words code and end-code must be defined in
the targets dictionary but do not need to have any e4thcom related properties.

code led1.on (--)
 BIT0 # P1OUT & .b bis next end-code

label LB[01,05]

Assign the targets next free code address to one of the global labels LB01...LB05, which are
predefined in the cross assembler dictionary, e.g.:

code min (n1 n2 -- n1|n2)
 sp)+ w mov tos w cmp label LB01 >? if, w tos mov then, next

end-code

code max (n1 n2 -- n1|n2)
 sp)+ w mov w tos cmp LB01 jmp end-code

\xas

A line of source code, that starts with \xas is not uploaded to the target but interpreted by the
cross assembler (the terminals internal Forth interpreter). This can be used to extend the cross
assembler, e.g. to add short macro definitions or to load a file with target specific resource
identifiers, e.g.:

\xas MCU: name Loads the file name.efr.

The search order to find name.efr is project-dir:e4thcom-dir.

x[..........]

A new feature of the cross assembler interface was added to version 0.5. The cross assembler can
be temporarily disabled to send text to the target and read a cell-sized value back. This is required
to write code that can access data or words defined on the target, e.g.:

#require code

\xas MCU: MSP430G2553

 \xas : dup, (--) tos sp -) mov ; \ some macros examples
\xas : push, (x --) dup, tos mov ; \

code base@ (-- u)
 x[base] & push, next end-code

Page 5 of 8Friday 13/11/2015, 16:54:00

The number base in the cross assembler mode is hex. The cross assembler is case sensitive. I
prefere lower case for operators and upper case for register and bit identifiers.

Cross Disassembling (Status: testing)

A target specific cross disassembler can be included by the terminal specific plug-in. Then the
terminal directive #das (abbr. #d) is supported at the terminals command line.

#das name
\ Starts disassembling name (at its xt).

#das
\ Reads an address from the targets TOS and starts disassembling at this address.

Using Resource Files

Modern MCUs have lots of peripheral modules. A host of parameters and descriptors is required to
access, configure and use this modules. e4thcom can load resource data from Forth files, to be
used in cross assembler definitions or to be uploaded to the target:

\res

A line of source code, that starts with \res is not uploaded to the target but interpreted by the
terminals internal Forth interpreter. This can be used to define resource descriptors in the terminals
dictionary or to load some from target specific resource files.

\res <single-number> equ name
\ Creates the resource descriptor name (a constant) in the terminals dictionary.

\res export name1 name2 ... nameN
\ Exports resource descriptors (as constants) from the terminals dictionary to the target.

\res MCU: name
\ Loads the (resource) file name.efr , e.g. \res MCU: MSP430G2553 .

The search order to find name.efr is project-dir:e4thcom-dir.

With a little help ...

e4thcom does not have a command line history and does not support extended command line
editing. It's intentionally designed minmalistic. But, in accordance with the UNIX Philosophy, one
can combine it with a tool, that adds missing capabilities. Such a tool is the ForthBox.

e4thcom in a ForthBox

The ForthBox is a GTK+ GUI for Forth Interpreters and Forth Terminals. It is a virtual terminal
emulator with some add-ons to make editing and uploading/execution of Forth source code files a
bit more comfortable.

A preferences dialog lets the user chose the client to be started in the terminal emulator, the
project folder to be used, the (external) editor and the parameters for the serial link.

To start the e4thcom terminal program in a ForthBox the following commands can be used:

/path/to/e4thcom/e4thcom -i forthbox or /path/to/e4thcom/forthbox

Page 6 of 8Friday 13/11/2015, 16:54:00

The preferences dialog pops up immediately after the program start. After chosing the required
options and pressing the OK-Button e4thcom is started in the ForthBox terminal window. If the
e4thcom client aborts with an error message, consider the hints given earlier concerning the
possible reasons and try again.

The ForthBox has not yet been released on its own and documentation is still missing. So some
hints are given here:

• The toolbar allows the user to choose a file for editing or uploading by means of the Edit- resp.
the Execute-Button.

• Next to this two buttons there is a Menu-Button, that gives access to the global list of recently
used files, which is managed by the OS. All files recently chosen for editing are also listed here.

• A file, chosen for editing, is forwarded to the external editor, that was chosen in the preferences
dialog.

• With the first entry in the recent files menu of the Execute-Button, the terminal client (in this
case e4thcom) can be restarted if required.

• A separate command line with text selection and text completion can be activated underneath
the terminal window by clicking on the check-button in the lower right corner of the ForthBox
window.

• The preferences dialog reads its data from a config file named .forthbox . You can copy it into
your project directories and edit it according to your preferences. The content should be self-
explanatory. Search order is project-directory:e4thcom-directory.

ForthBox on the Raspberry Pi/Raspbian

When starting the ForthBox on the Raspberry you may see a number of GLib warnings. Ignore it.
The ForthBox works as expected. (The same phenomenon occures with other Gtk applications.)

When connecting to the Raspberry via ssh -X and starting the ForthBox for the first time it may fail
with an error message from the X-server. Reset the terminal with reset [Enter] and try again.
You will then succeed.

What's left to do :

• Adding device locking to prevent concurrent device access from different processes. If another
process uses the same device as the e4thcom terminal, it may snap away received chars so that
the communication with the target will not work properly.

The problem here seems to be, that not all programs, that use serial devices, use device locking or
don't do it the same way.

• Adding more targets and cross assemblers.

You can do it yourself and/or contribute. The new plug-in structure should make it easy. The plug-in
files and the cross assembler file that come with this release should be useful examples.

Annotation:

The e4thcom distribution comes with ABSOLUTELY NO WARRANTY. It is free software under the
terms of the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or any later version, see http://www.gnu.org/licenses .

Questions, error notes and suggestions for improvements or additional targets are welcome and
should be forwarded to manfred.mahlow@forth-ev.de .

Page 7 of 8Friday 13/11/2015, 16:54:00

e4thcom was implemented with MINFORTH Plus, a MINFORTH derivative. Thanks to Andreas Knochenhauer for creating
MINFORTH, which was a great starting point for my MINFORTH Plus development environment.

Thanks to Albert Nijhof and Willem Ouwerkerk for supporting me to make e4thcom ready for noForth and for agreeing
that the noForth cross assembler could be adapted to and can be distributed with e4thcom.

Last Revision: MM-151112

Page 8 of 8Friday 13/11/2015, 16:54:00

