PRELUDE and FINALE
Implicit context switching based on pre- and post-executed words

Manfred Mahlow
Weilienburger Str. 31, D-28211 Bremen , Germany
Phone: ++49 421 69458 65 and ++49 421 447395
email: c/o anwind@compuserve.com

Abstract

On the annualconferenceof the GermanForth

Associationin 1997,1 presentedhe "Prelude- “name prelude

Concept”,a simple but powerfull approachto

early-bindmethodsto data.It’s simpleenough assigns the word name as a pre-executed word
to be appliedto small microcontrollersystems (prelude) to the next created word and

and powerfull enoughto be useful for fat

systems too. “name finale

Since that time, the concept was used to assigns the word name as a post-executed word
implement extensionsfor context-orientedor (finale) to the next created one.
object-orientedorogrammingfor severalforth

systemsand basedon that experiencea more Let’s have a look on Figure 1, to see how it
general concept of pre- and post-executed

words evolved, that will be presentedn this ‘wordl () wordl executed” : <enters OK
paper.

“wordl prelude <enter> OK

sword2 (--) ." word2 executed"; <enter> OK
What are pre- and post-executed words ? word2 <enter> wordl executed word2 executed OK
A pre- or post-executeavord is a Forth word, :word3 (--) word2; <enter> wordl executed OK
that is assignedto another Forth word, to

. . . . word3 <enter> word2 executed OK

extend it’s compile-time and execute-time

semantics. A pre- or post-executedvord is
hidden behindhe word, it's assignedo, while ~ WOTkS
the word, it's assignedto, is visible to the Figure 1
programmetike any otherforth word. A pre-
or post-executedvord is executed,when the
visible word is compiled or executedby the
outer interpreter.

We createafirst word, word1l Thenwe tell the
systemthat wordl shall becomea prelude of
the next createdword. Finally we createthe
next word, word2.

Two words are needed, to handle pre- and postx h . h
executed wordsprelude and finale Now, when executing word2, we get the
' response "wordl executed word2 executed",

euroFORTH98 PRELUDE and FINALE, M. Mahlow 1 opage

indicating that word1 was executedas a pre-
executed word (prelude) of word2.

We create one more word, word3, using word2.

While the definition for word3is compiled,the
message"word1l executed"occures,because
word1is executedasa preludeof word2 before
word?2 is compiled.

Figure 2 showsthe sameexample,usingfinale
instead of prelude.

:wordl (--) ." wordl executed "; <enter> OK
“wordl finale <enter> OK
sword2 (--) ." word2 executed"; <enter> OK

word2 <enter> word2 executed wordl executed OK

:word3 (--) word2; <enter> wordl executed OK

word3 <enter> word2 executed OK

Figure 2

When word2 is executed,we now get the
response"word2 executed wordl executed”,
becausevordlis afinale now. While word3is

compiled,we get themessagevordl1 executed,
but now wordl is executedas a finale after

word2 was compiled.

What are pre- and post-executed words
good for ?

The conceptof pre- and post-executedvords
was found, when looking for a simple time-
and memory-efficientapproachto implement
aspectf context-orientedand object-oriented
technicsfor small microcontroller systems.|
still didn’t havethe time andthe needto think
about other applications but | expect the
conceptof pre-andpost-executeavords might
be usefull for other things too.

Now lets take a shortlook how pre- and post-
executed words can be used to early-bind

methods to data. See Figure 3 for that purpose.

The new data typasciiis introduced. First a

euroFORTH98

PRELUDE and FINALE, M. Mahlow

vocabularyasciiis createdto hold all the ascii-
relatedmethods.Then methodsto fetch, store

and display and create ascii data are defined.
Figure 3

\ Creating a methods context for the new data type ascii .
vocabulary ascii ascii definitions decimal
\ Creating methods to fetch, store and display an ascii character
“forth finale “~c@ alias @ (a--b)

“forth finale “c! alias !(ba--)

“ forth finale :?(a-)c@ emit;
\ Creating the defining word for the ascii data type

“forth finale :variable (--) (ib: name)

[1ascii prelude create blc, ;

The new ascii methodvariable createsa byte
variable and assignsthe vocabularyascii as a
pre-executedvord to it. So, an ascii variable
will invoke the context ascii, before it’'s
executedor compiled, so that the vocabulary
ascii will be on top of the vocabularysearch
order, beforethe outerinterpreterof the Forth
system makes the next dictionary search
access.

An ascii variable referencewill be normally
followed by an ascii method. The interpreter
will pick up the nameand (hopefully)find it in

the ascii vocabularythat’son top of the search
order.

If theword is not a memberof the asciivocabularythen
it might be found in anothervoacabularydeeperin the
serachorder. That might be okay or it might be anerror
condition. It’s only a restrictionof this simple example
and can be solved better with little effort.

All asciimethodshavegot the vocabularyforth
as post-executedword. So all methodswill
switch back from the ascii contect to the
context forth after beeing executed or
compiled.

Allways returningto forth is only a restriction of this
simple example.lt can be handledin a more general
form.

2 opage

Figure4 showesa print out of the vocabularies
forth and ascii, after the sourcecode from

The headercreatingword in the forth kernel
mustbe redefinedandthe outerinterpreterhas

Figure 3 was compiled and Figure 5 is a record to be modified.

of a short session, using the new data type.

ascii words <enter>

variable ? ! @ OK

forth words <enter>

ascii finale prelude ... many other names follow here ... OK

Figure 4

forth definitions decimal

ascii variable test <enter> OK
test? <enter> OK
char A test! <enter> OK

test ? <enter> A OK

test @ emit <enter> A OK

Figure 5

Well, that are the basicsof implicit context
switching based on pre- and post-executed
words.

We couldaddsomesyntacticsugar,introducea
more sofisticatedcontextswitching,addrecord
structuresandinheritanceandwe would endup
with a more or lessfull featuredextensionfor

contextand object orientedprogramming.See
Appendix 1 for a syntax example.

How to implement pre- and post-executed
words ?

Implementingpre- and post-executedavordsis
not very complicatedout it dependssery much
on the inplementatiordetailsof a forth system
andit’s necessaryo recompilethe kernelor to
patch it.

euroFORTH98 PRELUDE and

Redefining the header creating word

A pre- or post-executed word can be assigned
to another Forth word by giving the header of
that Forth word an additional cell-sized code-
pointer. Furthermore two free bits are needed
in the header, to indicate, whether a word has a
prelude or a finale.

Figure 6 gives an example, how an
implementation could be done:

forth definitions decimal
variable “prelude
variable “finale

: header (--) (ib: name)
align
‘prelude @ ?dup if , then
‘finale @ ?dupif , then
header
‘prelude @ if set-prelude-bit then
“finale @ if set-finale-bit then
“prelude off
“finale off ;

: prelude (xt--) “prelude ! O “finale! ;

: finale (xt--) “finale ! 0 "prelude ! ;

Figure 6

Modifying the outer interpreter

It's the outer interpreter’sjob, to figure out,
whethera word, found in the dictionary,hasa
preludeor a finale andto pre- or post-execute
it. Assuming,thatthe outerinterpreterusesthe
words compile, and execute, to compile or
executea word, we haveto replacethis words
by the new words ?compile, and ?execute
shown in Figure 7:

forth definitions decimal

: ?compile, (xt --)
dup prelude-bit-set? if prelude-xt-@ execute then
dup compile,
finale-bit-set? if finale-xt-@ execute then ;

: ?execute (xt--)
dup prelude-bit-set? if prelude-xt-@ execute then
dup execute

FINALE , taiMabder if finale-xt-@ execute then 3 OPp@ge

Figure 7

So, implementing pre- and post-executed
words is a relatively simple task, but in many
existing forth systemsyou will not have two
bits available in the header structure.

In this caseyou can succeeddy implementing

pre-executed words only or post-executed
wordsonly. Thenyou’ll only needonebit and

halve the code for the implementation.

This might alsobe attractivefor small systems
with limited memory.

Using pre-and post-executeavordswill make
the implementation of object oriented
extensionslesscomplicatedand more elegant,
but everythingcan be doneusingonly pre- or
post-executed words.

| startedwith this reducedapproachand still
use it, but | prefereto have pre- and post-
executedwords supported,to have a higher
degreeof freedomfor the further evaluationof
the potential of the conceptof pre- and post-
executed words.

euroFORTH98

PRELUDE and FINALE, M. Mahlow

References

[Bro84] L. Brodie. Thinking Forth. Prentise
Hall, 1984.

[Fors94] L. Forsley. Rhyme, Reason and the
Tao of Forth.
Proceedings euroFORTH94.

M.L. Gassanenko. Context-Oriented
Programming: Evolution of
Vocabularies.

Proceedings euroFORTH93.

[Gas93]

[Mat89] J. Matthews. FORTH applications in
engineering and industry. Ellis
Horwood Limited, 1989.

[Vac90] G.-U. Vack. Programmieren mit

FORTH. VEB Verlag Technik, 1990

[Woe92] J. Woehr. Forth: The New Model. A
Programmer’s Handbook. Prentise
Hall, 1992.

[Mah97] M. Mahlow. Kontextorientierte

FORTH Systeme. FORTH-Tagung

1997

[Schl98] K. Schleisiek. Prelude - Objekte und

Methoden mit Fehlerprifung.Vierte

Dimension 3/98, Forth-Gesellschaft

e.V.

4 opage

Appendix 1 : Syntax examples for object-oriented programming, based on implicit context
switching, based on pre- and post-executed words.

forth definitions decimal

class: .byte \ create the new class byte
\ a class instance is created in the form : .byte object: name
byte field \ a .byte instance has a one byte data field
method” c@ alias @ (oa--b) \ fetch a byte
method “c! alias ! (boa--) \ store a byte
method :? (oa--)c@ . ; \ display a byte

forth definitions decimal
class: .char \ createthe new class char

\ a class instance is created in the form : .char object: name
.byte inherited \ class .byte is inherited

method :? (oa--)c@ emit ; \ overwrite inherited method

forth definitions decimal

class: .short \ create the new class short
\ a class instance is created in the form : .short object: name
2 bytes field \ a .short instance has a two byte data field

method ‘w@ alias @ (oa--w) \ fetch a short

method “w! alias ! (woa--) \ store a short
method :? (oa--)w@ . ; \ display a short

forth definitions decimal

class: .point \ create the new class point
\ aclass instance is created in the form : .point object: name
.point structure begin \ start of data definition
.short field: x \ the x-coordinate of a point
.short field: y \ the y-coordinate of a point
.point structure end \ end of data definition

method : @ (oa--xy)dup .pointx @ swap .pointy @\;fetch a points coordinates
method : ! (xyoa--) dup>r .pointy! r>.pointx! ; \ store a points coordinates
method : ? (oa--).point@ ."x="swap. ."y=".; \ display a points coordinates

euroFORTH98 PRELUDE and FINALE, M. Mahlow 5 opage

forth definitions decimal

class: .rectangle \ create the new class rectangle
\ a class instance is created in the form .rectangle object: name

.rectangle structure begin
.point field: ulc \ the upper left corner
.point field: Irc \ the lower right corner
.rectangle structure end

method \ display rectangle coordinates
:? (oa--)dup." ulc: " .rectangle ulc ? .

Irc: " .rectangle Irc ? ;

forth definitions decimal

class: .colored-rectanglée\ create the new class colored-rectangle
\ create an instance in the form .colored-rectangle object: name

.colored-rectangle structure begin
.rectangle inherited the rectangle coordinates
.short field: color \ the rectangle color
.colored-rectangle structure end

method \ display rectangle coordinates and color
:? (oa--)dup .colored-rectangle ? ." color: " .colored-rectangle color ? ;

forth definitions

Classes are special vocabularies. A class can inherit once. Methods can be compiled at any time and
will be visible to all instances of that class and to all instances of the child classes of that class. The
data structure of a class, once created, can not be extended later. The class must be redefined or a
new class must be created to inherit and extend the older one.

On a 16 bit ANS Forth System it takes less then 200 bytes to implement pre- and post-executed
words. It takes less then 400 bytes more, to implement an extension for context-oriented
programming with a separate sealed search order for methods contexts (classes), that allready
supports inheritance and it takes less then 900 bytes to allow object-oriented programming like
shown in the syntax examples above.

You are invited to contact me in case of questions or if you are interested in implementation details,
but be warned, I'm a very busy guy.

euroFORTH98 PRELUDE and FINALE, M. Mahlow 6 opage

