
1

MSP430 Lite Target Code

v7.3

Microprocessor Engineering Limited

Copyright 2003, 2005, 2007, 2009, 2013

Microprocessor Engineering Limited

MSP430 Lite Target Code v7.3 Manual revision 7.3
10 November 2014

133 Hill Lane - Southampton SO15 5AF UK

Tel: +44 (0)23 8063 1441 - e-mail: mpe@mpeforth.com

2

Table of Contents

(page numbers relate to the orignal PDF)

1 Lite version licence terms 5

1.1 Compiler 6

1.2 Distribution of application
programs

6

1.3 Warranties and support 1

2 Introduction 7

2.1 Before you start 7

2.2 Working with AIDE 7

2.3 Producing the kernel 8

2.4 About the standalone kernel 9

2.5 About Umbilical Forth 9

2.6 Gotchas 10

2.6.1 Flash problems 10

2.6.2 Serial lockup 10

3 MSP430G2553 start up 11

3.1 Magic addresses 11

3.2 Start of Forth 12

3.3 Default Interrupt vectors 12

3.4 Reset values for user and system
variables

13

4 MSP430 code definitions 13

4.1 Register usage 13

4.2 Literal and flow of control 14

4.3 Flash operations 15

4.4 Digits and strings 15

3

4.5 Arithmetic 17

4.5.1 Basics 17

4.5.2 Multiplication 18

4.5.3 Division 18

4.6 Logic 19

4.7 Shifts 19

4.8 Return stack words 20

4.9 Comparisons 20

4.10 Stack primitives 21

4.11 Portability words 23

4.12 Defining words 24

4.13 Miscellaneous 25

5 High level kernel -
kernel72lite.fth

27

5.1 User variables 27

5.2 System data 28

5.2.1 Constants 28

5.2.2 System variables and data 28

5.3 Vectored I/O handling 29

5.3.1 Introduction 29

5.3.2 Building a vector table 29

5.3.3 Generic I/O words 20

5.4 Laying data in memory 21

5.5 Dictionary management 22

5.6 String compilation 22

5.7 ANS words CATCH and THROW 23

5.7.1 Example use 23

4

5.7.2 Gotchas 24

5.7.3 User words 24

5.8 Formatted and unformatted i/o 25

5.8.1 Setting number bases 25

5.8.2 Numeric output 25

5.8.3 Numeric input 25

5.9 String input and output 26

5.10 Source input control 26

5.11 Text scanning 26

5.12 Miscellaneous 27

5.13 Wordlist control 27

5.14 Control structures 27

5.15 Target interpreter and compiler 28

5.16 Startup code 30

5.16.1 The COLD sequence 30

5.17 Kernel error codes 30

6 Time Delays 31

7 Debug tools 33

8 Compile source code
from AIDE

35

9 Minimal Umbilical code
definitions

37

9.1 Logical and relational operators 37

9.2 Control flow 37

9.3 Stack manipulation 39

9.4 String operators 39

5

9.5 Umbilical versions of defining
words

40

9.6 Interrupt handling 40

10 MSP430 library 41

11 USCI serial driver 43

11.1 Baud rate calculation 43

11.2 UART0 43

11.3 UART1 43

11.4 Initialisation 44

12 Ticker using watchdog
timer

45

13 Device drivers 47

13.1 Basic port usage 47

13.2 Port counting using interrupts 47

13.3 Simple ADC driver 48

13.4 PWM 48

14 Index 49

Link to Project Page

6

1 Lite Version Licence Terms

1.1 Compiler

You may not redistribute any portion of the compiler or Lite system
distribution without written permission from MicroProcessor
Engineering Ltd (MPE). The distribution should be downloaded as a whole
from the MPE web site.

The compiler is licensed for non-commercial uses only. For example, you
may not sell a product that contains code generated with the Lite compiler.
If your job or payment depends on use of the Lite compiler, that is a
commercial use.

If you think that you are a special case, e.g. you want to use the compiler in
a school, college or university class, just ask us.

If you are not a special case, use the Lite compiler for evaluation and then
buy a Standard or Professional version of the compiler to acquire many
more facilities and a commercial-use licence.

1.2 Distribution of application programs

Applications compiled with the MPE Lite compiler may be distributed free-
of-charge. The MPE sign-on message must be preserved and a link to the
MPE website must be provided. No part of the cross-compiler or the target
source code may be further distributed except as detailed above.

1.3 Warranties and support

We try to make our products as reliable and bug free as we possibly can.
We support our products. If you find a bug in this product and its
associated programs we will do our best to fix it. Please check first by email
to tech-support@mpeforth.com to see if the problem has already been
fixed. Please send us enough information including source code on disc or
by email to us, so that we can replicate the problem and then fix it. Please
let us know the version/build number of your system.

Technical support will only be available on the current version of the
product.

7

2 Introduction

This manual documents the MPE Forth kernel for the MSP430 Launchpad
with anMSP430G2553 processor.

2.1 Before you start

The MPE Forth kernel uses the hardware UART for serial communications.
This is run through the USB facilities on the Launchpad. Make sure that the
five links of J3 and the two links of J5 on the Launchpad are set as below.

Figure 2.1: Launchpad links

Check that the TI DLLs, MSP430.dll and HIL.dll are installed where the MPE
cross-compiler can find them. Installation is dicussed in chapter 4, "JTAG
and and the MSP430" of the MSP40 cross-compiler manual,
Docs/MSP430man.pdf. If the DLLs are incorrectly installed, you will not be
able to program the Launchpad with the Forth kernel.

2.2 Working with AIDE

It seems to be essential that every language has an IDE. If you do not like
IDEs, you can skip this section. AIDE has three parts:

8

• Editor - ForthEd2 is a trivial editor just so that AIDE has one. There are

many far better programming editors. You can get AIDE to use a
different one using the IDE -> Configure/Locate menu entry. See the
AIDE manual for more details.

• Tool Capture Display - the cross compiler window in most cases. Note
that this is software running on the host PC. For a standalone Forth
target there is no connection to the target, except for Flash
programming and all target commands must be entered in a terminal
emulator, usually AIDE’s PowerTerm. For an Umbilical Forth target,
you can enter target commands and the cross compiler will try to
execute them on the target.

• PowerTerm - a terminal emulator used with standalone Forth systems.
It is specially adapted for debugging complex targets and features up to
eight individually controllable cursor-addressable displays - ideal for
debugging multi-tasking targets.

2.3 Producing the kernel

The Forth kernel is built using a cross compiler running in the AIDE
environment. AIDE contains three primary windows: compiler, terminal
emulator and text editor. The compilation results can be seen in the
compiler window. During compilation, the compilation results can be seen
in the compiler/tool window.

To compile the standalone Forth kernel, find the "liteLP2553sa" button in
the main toolbar and click it to compile from the control file
liteLP2553sa.ctl. The compiler will ask you whether you want to program
the Launchpad with the new kernel. Answer ’Y’ to the download and erase
prompts.

After programming the Launchpad, the new kernel will be running. To talk
to the kernel, use AIDE’s PowerTerm terminal emulator. The kernel talks
to PowerTerm through the Launchpad’s application UART. Finding this
UART can require a little botheration. There are two ways to do this.

1. Go to Windows Control Panel -> System -> Device Manager -> Ports.
One of the entries will be something like: MSP430 Application UART
(COM10). COM10 will be the UART you will use.

2. Go to AIDE’s PowerTerm configuration dialog. Select the drop down
list in the COMPort# group. It will list all the available COM ports by

9

COM number and name. The one you want includes: COMxx MSP430
Application UART.

Now select the required port in the PowerTerm configuration dialog and
ensure that it is set to 9600 baud, 8 data bits, 1 stop bit, no parity and file
server enabled. Save the configuration and press OK. Start the
PowerTerm connection and you should be talking to the kernel.

2.4 About the standalone kernel

The control file liteLP2553sa.ctl specifies the use of the target Flash as
follows:

Kernel: $D000..FFE0, then vectors to $FFFF

App: $C000..CFFF

The App space is where the target kernel compiles code.

The Forth kernel you have made and installed is a cut-down version of the
full MPE Forth kernel. It has extensions so that code is compiled directly
into the MSP430 Flash. When you want to add code, you can compile it
directly on the Forth kernel by using the phrase include <filename>

on the target Forth command line. AIDE will then try to deliver the file to
the kernel. If the file cannot be found, AIDE will let you change the default
directory (the commonest problem) or correct the spelling.

To start over just type EMPTY, the application region of the Flash will be
cleaned, and the CPU is rebooted. To reuse your compiled code at the next
reboot or power up, use the word COMMIT. If you just want to preserve the
code, use:

Chapter 2: Introduction

0 COMMIT

If you want the Forth to run a word, say APP, use:

’ APP COMMIT

2.5 About Umbilical Forth

The control file liteLP2553uf.ctl specifies the use of an Umbilical Forth
system in which the cross compiler provides all the interactivity. Because

10

the TI Launchpad uses a very slow USB connection, the interaction takes a
very long time. It was designed for use with a 115200 baud serial line.

Umbilical Forth provides a minimal Forth system on the target for
situations where every byte matters. You can put far more functionality
onto a 16 kb Umbilical Forth system than on a 16 kb standalone Forth.

2.6 Gotchas

2.6.1 Flash problems

If you forget to use COMMIT and EMPTY appropriately, the MSP430 Flash
may not be correctly erased and so application compilation may fail. Try
to use EMPTY and if that fails, reinstall a new kernel.

The Flash programming DLLs are unreliable on many PCs. Just accept this
as the cost of cheap hardware and software. Eventually, the Flash will be
programmed, but you may need to recompile a few times to achieve this.

The Launchpad is built down to a price. The JTAG facilities are provided by
a secondary CPU on the Launchpad and by Windows DLLs. In the past this
combination has shown a few problems, especially if the Launchpad has
been unexpectedly disconnected and reconnected.

If you come across such a problem, shut down all the software that could
be using the MSP430 DLLs. Then restart the software. If problems persist,
disconnect the Launchpad, reboot the PC, reconnect the Launchpad, and
only then restart the software.

2.6.2 Serial lockup

Occasionally the connection to the USB UART refuses to open properly and
AIDE’s PowerTerm appears to lock up. DO NOT CLOSE THE CONNECTION.
Instead, remove the USB cable and wait for PowerTerm to detect this and
close the connection. Then reconnect the USB cable and attempt to open
the UART again. You may have to do this a few times to establish a good
connection.

11

3 MSP430G2553 start up

The file MSP430\Hardware\Launchpad2553\start2553.fth contains Forth
start up code and initialisation tables for a Launchpad board with an
MSP430G2553 CPU.

3.1 Magic addresses

Some factory calibration data is held in Info Flash in TLV (Tag, Length,
Value) format. The most interesting of this are the DCO and ADC
calibration data. For startup, we need the DCO calibration data

$10FF CALBC1_1MHz

$10FE CALDCO_1MHz

$10FD CALBC1_8MHz

$10FC CALDCO_8MHz

$10FB CALBC1_12MHz

$10FA CALDCO_12MHz

$10F9 CALBC1_16MHz

$10F8 CALDCO_16MHz

$10F7 08 Size (bytes) of value data

$10F6 01 Tag

Port 1 is used as follows:

P1.0 Green LED, high=on

P1.1 UART Rx

P1.2 UART Tx

P1.3 Button Switch input

P1.4 --

P1.5 --

P1.6 Red LED, high=on

12

P1.7 --

3.2 Start of Forth

This section contains initial values of Forth registers and the code to
initialise and run Forth.

L: ECLD

The entry point after reset. This code is for a TI Launchpad board run
from the DCo at 8 MHz. It uses LEDs on P1.6 (red) and P1.0 (green) for
debugging.

XT2-speed [if]

If the equate XT2-speed is set non-zero in the control file, the main clock is
taken from the high frequency oscillator at the frequency specified by XT2-
speed.

3.3 Default Interrupt vectors

All interrupt vectors are set to point to the ECLD entry point above. Later
code may modify these settings.

ECLD reset_vec !

ECLD nmi_vec !

ECLD timer1_A0_vec !

ECLD timer1_A1_vec !

ECLD CompA_vec !

ECLD WDT_vec !

ECLD timer0_a0_vec !

ECLD timer0_a1_vec !

ECLD UCx0Rx_vec !

ECLD UCx0Tx_vec !

ECLD ADC10_vec !

ECLD P2_vec !

ECLD P1_vec !

13

3.4 Reset values for user and system variables

The equate SP-GUARD in the control file defines how many guard
cells are provided at the top of the data stack to give some protection
against system crashes if code underflows the data stack. If SP-
GUARD is undefined at this point, a default value of 0 is defined.

0 equ sp-guard \ -- n

Default number of data stack guard cells.

The section of USER variable initialisation values is generated for
standalone targets if the equate UMBILICAL? is udefined or set to zero.

4 MSP430 code definitions

The file MSP430\Code430lite.fth contains all the code definitions
needed for a small standalone Forth kernel. Such a kernel is practical
for the MSP430G2553 that has enough Flash and RAM. See
liteLP2553sa.ctl for the control file.

If you are using Umbilical Forth, treat MSP430\Code430lite.fth as a source
repository from which you can copy required words.

4.1 Register usage

On the MSP430 the following register usage is the default:

Forth MSP430 Comments

IP R1/SP MSP430 PC

RSP MSP430 return stack

-- R2/CG1/SR

-- R3/CG2

PSP R4 data stack pointer

TOS R5 cached top of data stack

UP R6 USER area pointer

LP (locals) R7 points to LOCALs on r.
stack scratch

14

R8..R13 with R5 forms working

stack codegen

R14 code generator temporary
codegen

R15 preserves SR in shuffle

The VFX code generator reserves R14 and R15 for internal operations.
CODE definitions must use R5 as TOS with NOS pointed to by R4 as a
descending stack. R8..R15 are free for use by CODE definitions and need
not be preserved or restored. You should assume that any register can be
affected by other words.

4.2 Literal and flow of control

code execute \ xt --

Execute the code described by the XT. This is a Forth equivalent to an
assembler JSR/CALL instruction.

proc docreate \ -- a-addr

The run time action of CREATE.

CODE (DO) \ limit start --

The run time action of DO compiled on the target.

CODE (?DO) \ limit start --

The run time action of ?DO compiled on the target.

CODE (LOOP) \ -- ; absolute address follows inline

The run time action of LOOP compiled on
the target.

CODE (+LOOP) \ n --

The run time action of +LOOP compiled on the target.

code i \ -- n ; return DO ... LOOP index

Return the current index of the inner-most DO..LOOP.

code j \ -- n ; return outer DO ... LOOP index

15

Return the current index of the outer DO..LOOP.

code unloop \ -- ; discard DO ... LOOP parameters ;

ANS 6.1.2380

Remove the DO..LOOP control parameters from the return stack.

CODE LEAVE \ -- ; leave DO ... LOOP

Remove the current DO..LOOP parameters and jump to the end of the
DO..LOOP structure.

4.3 Flash operations

: FlErase \ addr len --

Erase the Flash sectors in the given range.

: c!f \ b addr --

Program any address, including Flash, with an 8 bit value.

: !f \ w addr --

Program any address, including Flash, with a 16 bit value.

4.4 Digits and strings

code DIGIT \ char base -- 0 | n true

If the ASCII value char can be treated as a digit for a number in the
given base then return the digit and a TRUE flag, otherwise just
return FALSE. For bases greater than 10, the letters A..Z are used, e.g.
0..9,A..F for hexadecimal.

: /string \ addr len n -- addr+n len-n

Modify a string address and length to remove the first N characters from
the string.

CODE CMOVE \ source dest len -- ; copy memory areas

Copy U bytes of memory forwards from C-
ADDR1 to C-ADDR2.

CODE CMOVE> \ source dest len -- ; copy memory areas

As CMOVE but working in the opposite direction, copying the last character
in the string first.

16

code fill \ addr len char --

Fill len bytes of memory starting at addr with the byte specified as char.

: ERASE \ addr len --

Fill len bytes of memory starting at addr with zero.

code s= \ addr1 addr2 count -- flag

Compare two same-length strings/memory blocks, returning TRUE if they
are identical.

code SKIP \ c-addr u char -- ’c-addr ’u

Modify the string description by skipping over leading occurrences of
’char’.

code scan \ caddr u char -- caddr2 u2

Look for first occurrence of CHAR in string and return new string. C-
addr2/u2 describe the string with CHAR as the first character.

: count \ addr -- addr+1 len

Given the address of a counted string in memory this word will return the
address of the first character and the length in characters of the string.

: (") \ -- addr ; in-line string follows caller, and

skip it

Return the address of a counted string that is inline after the CALLING
word, and adjust the CALLING word’s return address to step over the
inline string. See the definition of (.") for an example.

: upc \ char -- char’ ; force upper case

Convert char to upper case.

: upper \ c-addr len --

Convert the ASCII string described to upper-case. This operation happens
in place.

: PLACE \ c-addr1 u c-addr2 --

Place the string c-addr1/u as a counted string at c-addr2.

17

4.5 Arithmetic

4.5.1 Basics

: 1+ 1+ ; \ n -- n+1

Add one to top-of stack.

: 2+ 2+ ; \ n -- n+2

Add two to top-of stack.

: 1- 1- ; \ n -- n-1

Subtract one from top-of stack.

: 2- 2- ; \ n -- n-2

Subtract two from top-of stack.

: 2* 2* ; \ n1 -- n2

Signed multiply top of stack by 2.

: u2/ u2/ ; \ n1 -- n2 ; unsigned

Unsigned divide top of stack by 2.

: 2/ 2/ ; \ n1 -- n2 ; signed

Signed divide top of stack by 2.

: - - ; \ n1 n2 -- n1-n2

Subtract two single precision integer numbers. N3|u3=n1|u1-n2|u2.

: + + ; \ n1 n2 n1+n2

Add two single precision integer numbers.

: negate \ n1 -- -n1

Negate a single precision integer number.

: abs \ n1 -- |n1|

If n is negative, return its positive equivalent (absolute value).

: dnegate \ d1 -- -d1

Negate a double number.

: dabs \ d1 -- |d1|

18

If d is negative, return its positive equivalent (absolute value).

CODE D+ \ d1 d2 -- d3

Add two double precision integers.

CODE D- \ d1 d2 -- d1-d2

Subtract two double precision integers. D3=D1-D2.

CODE S>D \ n -- d

Convert a single number to a double one.

: D< \ d1 d2 -- t/f

Return TRUE if the double number d1 is < the double number d2.

: d> \ d1 d2 -- t/f

Return TRUE if the double number d1 is > the double number d2.

: d0= \ d -- t/f

Returns true if d is 0.

: d= \ d1 d2 -- t/f

Return TRUE if the two double numbers are equal.

4.5.2 Multiplication

code um* \ u1 u2 -- ud ; unsigned multiply

Perform unsigned-multiply between two numbers and return double
result.

code * \ n1 n2 -- n1*n2 ; signed multiply, : * um*

drop ;

Standard signed multiply. N3 = n1 * n2.

code m* \ n1 n2 -- d ; signed multiply

Signed multiply yielding double result.

4.5.3 Division

code um/mod \ u32 u16 -- urem uquot

Perform unsigned division of double number UD by single number U and
return remainder and quotient.

19

code sm/rem \ d n -- rem quot ; symmetric division

Perform a signed division of double number D1 by single number N2 and
return remainder and quotient using symmetric (normal) division.

: /mod \ n1 n2 -- rem quot

Signed division of N1 by N2 single-precision yielding remainder and
quotient.

: / \ n1 n2 -- quot

Standard signed division operator. n3 = n1/n2.

: mod \ n1 n2 -- rem

Return remainder of division of N1 by N2. n3 = n1 mod n2.

: MU/MOD \ ud1 u2 -- u3 ud4

Perform an unsigned divide of a double ud1 by a single u2, returning
a single remainder u3 and a double quotient ud4.

4.6 Logic

: AND AND ; \ n1 n2 -- n3

Perform a logical AND between the top two stack items and retain the
result in top of stack.

: OR OR ; \ n1 n2 -- n3

Perform a logical OR between the top two stack items and retain the result
in top of stack.

: XOR XOR ; \ n1 n2 -- n3

Perform a logical XOR between the top two stack items and retain the
result in top of stack.

: INVERT INVERT ; \ n1 -- n2

Perform a bitwise NOT on the top stack item and retain result.

4.7 Shifts

code lshift \ x count -- x’

Left shift x by count bits.

20

code rshift \ x count -- x’

Right shift x by count bits.

4.8 Return stack words

CODE >R \ x -- ; R: -- x

Push the current top item of the data stack onto the top of the return stack.

CODE R@ \ -- x ; R: x -- x

Copy the top item from the return stack to the data stack.

CODE R> \ -- x ; R: x --

Pop the top item from the return stack to the data stack.

4.9 Comparisons

: = \ n1 n2 -- flag

Return TRUE if the two topmost stack items are equal.

: <> \ n1 n2 -- flag

Return TRUE if the two topmost stack items are different.

: 0<> \ n -- flag

Compare the top stack item with 0 and return TRUE if not-equal.

: 0= \ n -- flag

Compare the top stack item with 0 and return TRUE if equals.

: 0< \ n -- flag

Return TRUE if the top of stack is less-than-zero.

: 0> \ n -- flag

Return TRUE if the top of stack is greater-than-zero.

: U< \ n1 n2 -- flag

An UNSIGNED version of <.

: U> \ n1 n2 -- flag

An UNSIGNED version of >.

21

: < \ n1 n2 -- t/f

Return TRUE if n1 is less than n2.

: > \ n1 n2 -- t/f

Return TRUE if n1 is greater than n2.

: <= \ n1 n2 -- t/f

Return TRUE if n1 is less than or equal to n2.

: >= \ n1 n2 -- t/f

Return TRUE if n1 is greater than or equal to n2.

4.10 Stack primitives

: OVER over ;\ n1 n2 -- n1 n2 n1

Copy NOS to a new top-of-stack item.

: 2OVER \ n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2

Similar to OVER but works with cell-pairs rather than cell items.

: DROP drop ; \ n1 --

Lose the top data stack item and promote NOS to TOS.

: 2DROP 2drop ; \ n1 n2 --

Discard the top two data stack items.

: SWAP swap ;\ n1 n2 -- n2 n1

Exchange the top two data stack items.

: 2SWAP \ n1 n2 n3 n4 -- n3 n4 n1 n2

Exchange the top two cell-pairs on the data stack.

: DUP dup ; \ n1 -- n1 n1

DUPlicate the top stack item.

: 2DUP 2dup ;\ n1 n2 -- n1 n2 n1 n2

DUPlicate the top cell-pair on the data stack.

: ?dup \ n1 -- n1 [n1]

DUPlicate the top stack item only if it non-zero.

22

: nip nip ; \ n1 n2 -- n2

Dispose of the second item on the data stack.

: tuck \ n1 n2 -- n2 n1 n2

Insert a copy of the top data stack item underneath the current second
item.

: pick \ nn..n0 n -- nn..n0 nn

Get a copy of the Nth data stack item and place on top of stack. 0PICK is
equivalent to DUP.

: ROT \ n1 n2 n3 -- n2 n3 n1

ROTate the positions of the top three stack items such that the current
top of stack becomes the second item. See also ROLL.

: -rot \ n1 n2 n3 -- n3 n1 n2

The inverse of ROT.

: C@ c@ ; \ addr -- b

Fetch and 0 extend the character at memory ADDR and return.

: @ @ ; \ addr -- n

Fetch and return the CELL at memory ADDR.

: 2@ 2@ ; \ addr -- d

Fetch and return the two CELLS from memory ADDR and
ADDR+sizeof(CELL). The cell at the lower address is on the top of the
stack.

: C! \ b addr --

Store the character CHAR at memory C-ADDR.

: ! \ n addr --

Store the CELL quantity N at memory ADDR.

: 2! \ d addr --

Store the two CELLS x1 and x2 at memory ADDR. X2 is stored at ADDR and
X1 is stored at ADDR+CELL.

CODE +! \ n addr --

Add N to the CELL at memory address ADDR.

23

code noop \ -- ; dummy

A NOOP, null instruction.)

: within \ n1|u1 n2|u2 n3|u3 -- flag ; ANS 6.2.2440

The ANS version of WITHIN?. This word uses unsigned arithmetic, so that
signed compares are treated as existing on a number circle.

: on \ addr --

Given the address of a CELL this will set its contents to TRUE (-1).

: off \ addr --

Given the address of a CELL this will set its contents to FALSE (0).

: bounds \ addr len -- addr+len addr

Convert an address and length to adress+length and address as
required for DO..LOOP to use I as the current address.

: name> \ nfa -- cfa ; convert name address to CFA

Move a pointer from an NFA to the CFA or "XT" in ANS parlance.

: >name \ cfa -- nfa

Move a pointer from an XT back to the NFA or name-pointer. If the
original pointer was not an XT or if the definition in question has no
name header in the dictionary the returned pointer will be useless.
Care should be taken when manipulating or scanning the Forth
dictionary in this way.

: SEARCH-WORDLIST \ c-addr u wid -- 0|xt 1|xt -1

Search the given wordlist for a definition. If the definition is not
found then 0 is returned, otherwise the XT of the definition is
returned along with a non-zero code. A -ve code indicates a normal
definition and a +ve code indicates an IMMEDIATE word.

4.11 Portability words

Using these words will make code easier to port between 16, 32 and 64 bit
targets.

cell constant cell \ -- 2

Return the size in address units of one CELL.

24

: cells \ n -- n*2

Return the number of bytes required to hold the given number of 16 bit
cells.

: aligned \ addr -- addr’

Given an address pointer this word will return the next aligned address
subject to system wide alignment restrictions.

: >body \ xt -- pfa ; step from code field to

parameter field

Move a pointer from a CFA or "XT" to the definition BODY. This
should only be used with children of CREATE. E.g. if FOOBAR is defined
with CREATEfoobar, then the phrase ’foobar >body would yield the
same result as executing foobar.

: compile, \ addr --

Compile the word specified by xt into the current definition.

4.12 Defining words

: DOES> \ C: colon-sys1 -- colon-sys2 ; Run: -- ; R:

nest-sys --

Begin definition of the runtime action of a child of a defining word. You
should not use RECURSE after DOES>.

: : \ C: "<spaces>name" -- colon-sys ; Exec: i*x --

j*x ; R: -- nest-sys

Begin a new definition called name.

: CONSTANT \ x "<spaces>name" -- ; Exec: -- x

Create a new CONSTANT called name which has the value "x". When NAME
executes the value *\i{x) is returned.

: EQU\ x "<spaces>name" -- ; Exec: -- x

A synonym for CONSTANT abve to ease interactive debugging of
target drivers that are normally cross-compiled. Create a new
CONSTANT called name which has the value "x". When NAME
executes the value *\i{x) is returned.

: VARIABLE \ "<spaces>name" -- ; Exec: -- a-addr

25

Create a new variable called name. When Name is executed the address
of the RAM is returned for use with @ and !. The RAM is not initialised.

: USER \ u "<spaces>name" -- ; Exec: -- addr

Create a new USER variable called name. The ’u’ parameter specifies
the index into the user-area table at which to place the data. USER
variables are located in a separate area of memory for each task or
interrupt. Use in the form:

$400 USER TaskData

: DEFER \ Comp: "<spaces>name" -- ; Run: i*x -- j*x

Creates a new DEFERed word. No default action is assigned. User-
defined DEFERed words must be initialised by the application before
use.

’ <action> IS <deferredword>

or (when compiled)

[’] <action> IS <deferredword>

4.13 Miscellaneous

defer pause \ -- ; multitasker hook

Allows the sytem multitasker to get a look in. If the multitasker has not
been compiled, PAUSE is set to NOOP.

code reboot \ --

Starts the watchdog and waits until the CPU reboots.

: bor! \ mask addr --

Set mask bits in the byte at addr.

: bbic! \ mask addr --

Clear mask bits in the byte at addr.

: btoggle! \ mask addr --

Toggle the mask bits in the byte at addr.

: btst \ mask addr -- x

Return non-zero if the mask bits in the byte at addr are non-zero.

26

: or! \ mask addr --

Set mask bits in the word/cell at addr.

: bic! \ mask addr --

Clear mask bits in the word/cell at addr.

: toggle! \ mask addr --

Toggle the mask bits in the word/cell at addr.

: tst \ mask addr -- x

Return non-zero if the mask bits in the word/cell at addr are non-zero.

27

5 High level kernel - kernel72lite.fth.

The Forth kernel words documented here are entirely written in high-level
Forth. The kernel is reduced in size to match available code size in small
devices such as the MSP430G2553 in the TI Launchpad.

5.1 User variables

variable next-user \ -- addr

Next valid offset for a USER variable created by +USER.

: +user \ size --

Used in the cross compiler to create a USER variable size bytes long at the
next available offset and updates that offset.

tcb-size +user SELF \ task identifier and TCB

When multitasking is installed, the task control block for a task occupies
TCB-SIZE bytes at the start of the user area. Thus the user area pointer also
acts as a pointer to the task control block.

cell +user S0 \ base of data stack

Holds the initial setting of the data stack pointer. N.B. S0, R0, #TIB and ’TIB
must be defined in that order.

cell +user R0 \ base of return stack

Holds the initial setting of the return stack pointer.

cell +user #TIB \ number of chars currently in TIB

Holds the number of characters currently in TIB.

cell +user ’TIB \ address of TIB

Holds the address of TIB, the terminal input buffer.

cell +user >IN \ offset into TIB

Holds the current character position being processed in the input stream.

cell +user OUT \ number of chars displayed on current

line

Holds the number of chars displayed on current output line. Reset by CR.

28

cell +user DPL \ position of double number character

id

Holds the number of characters after the double number indicator
character. DPL is initialised to -1, which indicates a single number, and is
incremented for each character after the separator.

cell +user OPVEC \ output vector

Holds the address of the I/O vector for the current output device.

cell +user IPVEC \ input vector

Holds the address of the I/O vector for the current input device.

#64 chars dup +user PAD

A temporary string scratch buffer.

5.2 System data

5.2.1 Constants

$20 constant BL \ -- char

A blank space character.

5.2.2 System variables and data

Note that FENCE, DP, RP and VOC-LINK must be declared in that order.

variable DP \ -- addr

Flash dictionary pointer.

variable RP \ -- addr

RAM dictionary pointer.

variable xDP DP xDP ! \ -- addr

Holds the address of the current dictionary pointer, DP or RP.

variable LAST \ -- addr

Points to name field of last definition

29

5.3 Vectored I/O handling

5.3.1 Introduction

The standard console Forth I/O words (KEY?, KEY, EMIT, TYPE and CR)
can be used with any I/O device by placing the address of a table of xts
in the USER variables IPVEC and OPVEC. IPVEC (input vector) controls
the actions of KEY? and KEY, and OPVEC(output vector) controls the
actions of EMIT, TYPE and CR. Adding a new device is matter of writing
the five primitives, building the table, and storing the address of the
table in the pointers IPVEC and OPVEC to make the new device active.
Any initialisation must be performed before the device is made active.

Note that for the output words (EMIT, TYPE and CR) the USER variable OUT
is handled in the kernel before the funtion in the table is called.

5.3.2 Building a vector table

The example below is taken from an ARM implementation.

create

Console1

\ -- addr

’ serkey1i , \ -- char

’ serkey?1i , \ -- flag

’ seremit1 , \ char --

’ sertype1 , \ c-addr len --

’ serCR1 , \ --

Console1 opvec ! Console1 ipvec !

5.3.3 Generic I/O words

: key \ -- char ; receive char

Wait until the current input device receives a character and return it.

: KEY? \ -- flag ; check receive char

30

Return true if a character is available at the current input device.

: EMIT \ -- char ; display char

Display char on the current I/O device. OUT is incremented before
executing the vector function.

: TYPE \ caddr len -- ; display string

Display/write the string on the current output device. Len is added to OUT
before executing the vector function.

: CR \ -- ; display new line

Perform the equivalent of a CR/LF pair on the current output device. OUT
is zeroed. before executing the vector function.

: SPACE \ --

Output a blank space (ASCII 32) character.

: SPACES \ n --

Output n spaces, where n > 0. If n < 0, no action is taken.

5.4 Laying data in memory

These words are used to control and place data in memory. Note that the
Forth system compiles headers and code into Flash memory.

: HERE \ -- addr

Return the current dictionary pointer which is the first address-unit of free
space within the system.

: ORG \ addr --

Set the current dictionary pointer.

: ALLOT \ n --

Allocate N address-units of data space from the current value of HERE and
move the pointer.

: RHERE \ -- addr

Return the current RAM dictionary pointer.

: RALLOT \ n --

31

Allocate n bytes of RAM from RHERE and move the pointer.

: ROM \ --

HERE, ORG, ALLOT, , and friends, are set to use the Flash dictionary pointer.
This is the default.

: RAM \ --

HERE, ORG and ALLOT are set to use the RAM dictionary pointer. Use in the
form:

RAM ... ROM

: aligned \ addr -- addr’

Given an address pointer this word will return the next ALIGNED address
subject to system wide alignment restrictions.

: ALIGN \ --

ALIGN dictionary pointer using the same rules as ALIGNED.

: , \ x --

Place the CELL value X into the dictionary at HERE and increment the
pointer.

: C, \ char --

Place the CHAR value into the dictionary at HERE and increment the
pointer.

5.5 Dictionary management

The Forth header is laid out as below. The start and end of the header are
aligned at cell boundaries.

Link | Count | <name>

Cell | Byte | n Bytes

Also called LFA. This field contains the address of the of the next count
byte in the same thread of the wordlist.

32

The bottom five bits contain the length (0..31) of the name in bytes. The

top three Bits are used as follows:

Count/Ctrl

Bit 7 Always set

Bit 6 Immediate bit (0=immediate)

Bit 5 Reserved

<name> A string of ASCII characters which make up the name of the
word..

: FIND \ c-addr -- c-addr 0|xt 1|xt -1

Perform the SEARCH-WORDLIST operation on all wordlists within the
current search order. This definition takes a counted string rather than
a c-addr/u pair. The counted string is returned as well as the 0 on
failure.

: .NAME \ nfa --

Display a definition’s name given an NFA.

: CREATE \ --

Create a new definition in the dictionary. When the new definition is
executed it will return the address of the definition’s data area. As
compilation is into Flash, CREATE cannot be used with DOES> and
<BUILDS...DOES>... must be used instead.

: <BUILDS \ --

Always used in the form:

: defword <BUILDS ... DOES> ... ;

When defword is executed a new definition is created with the data
defined between <BUILDS and DOES> and the action defined between
DOES> and ;. You must use <BUILDS and DOES> together, otherwise
there will be a crash. Treat <BUILDS as a special case of CREATE for use
with DOES> and compilation into Flash.

5.6 String compilation

33

: (C") \ -- c-addr

The run-time action for C" which returns the address of and steps over a
counted string. INTERNAL.

: (S") \ -- c-addr u

The run-time action for S" which returns the address and length of and
steps over a string. INTERNAL.

: (ABORT") \ i*x x1 -- | i*x

The run time action of ABORT". INTERNAL.

: (.") \ --

The run-time action of .". INTERNAL.

5.7 ANS words CATCH and THROW

CATCH and THROW form the basis of all Forth error handling. The following
description of CATCH and THROW originates with Mitch Bradley and is
taken from an ANS Forth standard draft.

CATCH and THROW provide a reliable mechanism for handling
exceptions, without having to propagate exception flags through
multiple levels of word nesting. It is similar in spirit to the "nonlocal
return" mechanisms of many other languages, such as C’s setjmp() and
longjmp(), and LISP’s CATCH and THROW. In the Forth context, THROW
may be described as a "multi-level EXIT", with CATCH marking a
location to which a THROW may return.

Several similar Forth "multi-level EXIT" exception-handling schemes
have been described and used in past years. It is not possible to
implement such a scheme using only standard words (other than
CATCH and THROW), because there is no portable way to "unwind" the
return stack to a predetermined place.

THROW also provides a convenient implementation technique for the
standard words ABORT and ABORT", allowing an application to define,
through the use of CATCH, the behavior in the event of a system abort.

34

5.7.1 Example use

If THROW is executed with a non zero argument, the effect is as if the
corresponding CATCH had returned it. In that case, the stack depth is
the same as it was just before CATCH began execution. The values of the
i*x stack arguments could have been modified arbitrarily during the
execution of xt. In general, nothing useful may be done with those stack
items, but since their number is known (because the stack depth is
deterministic), the application may DROP them to return to a
predictable stack state.

Typical use:

: could-fail \ -- char

KEY DUP [CHAR] Q =

IF 1 THROW THEN

;

: do-it \ a b - - c

DROP could-fail

;

: try-it \ --

1 2 [’] do-it CATCH IF

(-- x1 x2) 2DROP ."

There was an exception" CR

ELSE

." The character was " EMIT

CR

THEN

;

: retry-it \ --

35

1 2 [’] do-it CATCH IF

WHILE

(-- x1 x2) 2DROP ."

Exception, keep trying" CR

REPEAT (char)

." The character was " EMIT

CR

;

5.7.2 Gotchas

If a THROW is performed without a CATCH in place, the system will/may
crash. As the current exception frame is pointed to by the USER variable
HANDLER, each task and interrupt handler will need a CATCH if THROW
is used inside it.

You can no longer use ABORT as a way of resetting the data stack and
calling QUIT. ABORT is now defined as -1THROW.

5.7.3 User words

: CATCH \ i*x xt -- j*x 0|i*x n

Execute the code at XT with an exception frame protecting it. CATCH
returns a 0 if no error has occurred, otherwise it returns the throw-code
passed to the last THROW.

: THROW \ k*x n -- k*x|i*x n

Throw a non-zero exception code n back to the last CATCH call. If n is 0, no
action is taken except to DROP n.

: ?throw \ flag throw-code -- ; SFP017

Perform a THROW of value throw-code if flag is non-zero, otherwise do
nothing except discard flag and throw-code.

: ABORT" \ Comp: "ccc<quote>" -- ; Run: i*x x1 -- |

i*x ; R: j*x -- | j*x

36

If x1 is non-zero at run-time, store the address of the following counted
string in USER variable ’ABORTTEXT, and perform -2THROW. The text
interpreter in QUIT will (if reached) display the text.

5.8 Formatted and unformatted i/o

5.8.1 Setting number bases

: HEX \ --

Change current radix to base 16.

: DECIMAL \ --

Change current radix to base 10.

: BIN \ --

Change current radix to base 2.

5.8.2 Numeric output

: HOLD \ char --

Insert the ASCII ’char’ value into the pictured numeric output string
currently being assembled.

: # \ ud1 -- ud2

Given a double number on the stack this will add the next digit to the
pictured numeric output buffer and return the next double number to
work with. PLEASE NOTE that the numeric output string is built from
right (l.s. digit) to left (m.s. digit).

: #S \ ud1 -- ud2

Keep performing # until all digits are generated.

: <# \ --

Begin definition of a new numeric output string buffer.

: #> \ xd -- c-addr u

Terminate defnition of a numeric output string. Return the address and
length of the ASCII string.

: D.R \ d n --

37

Output the double number ’d’ using current radix, right justified to ’n’
characters. Padding is inserted using spaces on the left side.

: D. \ d --

Output the double number ’d’ without padding.

: . \ n --

Output the cell signed value ’n’ without justification.

: U. \ u --

As with . but treat as unsigned.

: .R \ n1 n2 --

As D.R but uses a single-signed cell value.

5.8.3 Numeric input

: +DIGIT \ d1 n -- d2 ;

accumulates digit into double accumulator Multiply d1 by the current
radix and add n to it. INTERNAL.

: >NUMBER \ ud1 c-addr1 u1 -- ud2 c-addr2 u2 ; convert

all until non-digits

Accumulate digits from string c-addr1/u2 into double number ud1 to
produce ud2 until the first non-convertible character is found. c-
addr2/u2 represents the remaining string with caddr2 pointing the
non-convertible character. The number base for conversion is defined
by the contents of USER variable BASE. >NUMBER is case insensitive.

: (INTEGER?) \ c-addr u -- d/n/- 2/1/0

The guts of INTEGER? but without the base override handling. See INTEGER?
INTERNAL.

: Check-Prefix \ addr len -- addr’ len’

If any BASE override prefices or suffices are used in the input string, set
BASE accordingly and return the string without the override characters.
INTERNAL.

: number? \ $addr -- n 1 | d 2 | 0

38

Attempt to convert the counted string at ’addr’ to an integer. The
return result is either 0 for failed, 1 for a single-cell return result
followed by that cell, or 2 for a double return. The ASCII number string
supplied can also contain implicit radix over-rides. A leading $ enforces
hexadecimal, a leading # enforces decimal and a leading % enforces
binary.

5.9 String input and output

: BS \ -- ; destructive backspace

Perform a destructive backspace by issuing ASCII characters 8, 20h, 8. If
OUT is non-zero at the start, it is decremented by one regardless of the
actions of the device driver. INTERNAL.

: ?BS \ pos -- pos’ step ; perform BS if pos non-zero

If pos is non-zero and ECHOING is set, perform BS and return the size of the
step, 0 or -1. INTERNAL.

: SAVE-CH \ char addr -- ; save as required

Save char at addr, and output the character if ECHOING is set. INTERNAL.

: ." \ "ccc<quote>" --

Output the text upto the closing double-quotes character. Use .(<text>)
when interpreting.

: $. \ c-addr -- ; display counted string

Output a counted-string to the output device.

: ACCEPT \ c-addr +n1 -- +n2 ; read up to LEN chars

into ADDR

Read a string of maximum size n1 characters to the buffer at c-addr,
returning n2 the number of characters actually read. Input may be
terminated by CR. The action may be input device specific. If ECHOING
is non-zero, characters are echoed. If XON/XOFF is non-zero, an XON
character is sent at the start and an XOFF character is sent at the the
end.

5.10 Source input control

: SOURCE-ID \ -- n ; indicates input source

39

Returns an indicator of which device is generating source input. See the
ANS specification for more details.

: SOURCE \ -- c-addr u

Returns the address and length of the current terminal input buffer.
INTERNAL

: QUERY \ -- ; fetch line into TIB

Reset the input source specification to the console and accept a line of text
into the input buffer.

5.11 Text scanning

: PARSE \ char "ccc<char>" -- c-addr u

Parse the next token from the terminal input buffer using <char> as the
delimiter. The next token is returned as a c-addr/u string description.
Note that PARSE does not skip leading delimiters. If you need to skip
leading delimiters, use PARSE-WORD instead.

: PARSE-WORD \ char -- c-addr u ; find token, skip

leading chars

An alternative to WORD below. The return is a c-addr/u pair rather than
a counted string and no copy has occured, i.e. the contents of HERE are
unaffected. Because no intermediate global buffers are used PARSE-WORD
is more reliable than WORD for text scanning in multi-threaded
applications. INTERNAL.

: WORD \ char "<chars>ccc<char>" -- c-addr

Similar behaviour to the ANS word PARSE but the returned string is
described as a counted string.

5.12 Miscellaneous

: WORDS \ --

Display the names of all definitions in the wordlist at the top of the search-
order.

: MOVE \ addr1 addr2 u -- ; intelligent move

An intelligent memory move, chooses between CMOVE and CMOVE> at
runtime to avoid memory overlap problems. Note that as ROM

40

PowerForth characters are 8 bit, there is an implicit connection
between a byte and a character.

: DEPTH \ ??? -- +n

Return the number of items on the data stack.

: .FREE \ --

Return the free dictionary space.

5.13 Wordlist control

here is-action-of vocabulary \ -The runtime action of a VOCABULARY.

5.14 Control structures

: ?PAIRS \ x1 x2 --

If x1<>x2, issue and error. Used for on-target compile-time error checking.
INTERNAL.

: !CSP \ x --

Save the stack pointer in CSP. Used for on-target compile-time error
checking. INTERNAL.

: ?CSP \ --

Issue an error if the stack pointer is not the same as the value previously
stored in CSP. Used for on-target compile-time error checking.
INTERNAL.

: ?COMP \ --

Error if not in compile state. INTERNAL.

: ?EXEC \ --

Error if not interpreting. INTERNAL.

: DO \ C: -- do-sys ; Run: n1|u1 n2|u2 -- ; R: --

loop-sys

Begin a DO...LOOP construct. Takes the end-value and start-value from the
data-stack.

: ?DO \ C: -- do-sys ; Run: n1|u1 n2|u2 -- ; R: -- |

loop-sys

41

Compile a DO which will only begin loop execution if the loop parameters
are not the same. Thus 00?DO...LOOP will not execute the contents of the
loop.

: LOOP \ C: do-sys -- ; Run: -- ; R: loop-sys1 -- |

loop-sys2

The closing statement of a DO..LOOP construct. Increments the index and
terminates when the index crosses the limit.

: +LOOP \ C: do-sys -- ; Run: n -- ; R: loop-sys1 --

| loop-sys2

As with LOOP except that you specify the increment on the data-stack.

: BEGIN \ C: -- dest ; Run: --

Mark the start of a structure of the form:

BEGIN ... [WHILE] ... UNTIL / AGAIN / [REPEAT]

: AGAIN \ C: dest -- ; Run: --

The end of a BEGIN..AGAIN construct which specifies an infinite loop.)

: UNTIL \ C: dest -- ; Run: x --

Compile code into definition which will jump back to the matching BEGIN
if the supplied condition flag is Zero/FALSE.

: WHILE \ C: dest -- orig dest ; Run: x --

Separate the condition test from the loop code in a BEGIN..WHILE..REPEAT
block.

: REPEAT \ C: orig dest -- ; Run: --

Loop back to the conditional dest code in a BEGIN..WHILE..REPEAT
construct.)

: IF \ C: -- orig ; Run: x --

Mark the start of an IF..[ELSE]..THEN conditional block.

: THEN \ C: orig -- ; Run: --

Mark the end of an IF..THEN or IF..ELSE..THEN conditional construct.

: ELSE \ C: orig1 -- orig2 ; Run: --

42

Begin the failure condition code for an IF.

: RECURSE \ Comp: --

Compile a recursive call to the colon definition containing RECURSE itself.
Do not use RECURSE between DOES> and ;. Used in the form:

: foo ... recurse ... ;

to compile a reference to FOO from inside FOO.

5.15 Target interpreter and compiler

: ?STACK \ --

Error if stack pointer out of range. INTERNAL.

: ?UNDEF \ x --

Word not defined error if x=0. INTERNAL.

: POSTPONE \ Comp: "<spaces>name" --

Compile a reference to another word. POSTPONE can handle compilation of
IMMEDIATE words which would otherwise be executed during
compilation.

: S" \ Comp: "ccc<quote>" -- ; Run: -- c-addr u

Describe a string. Text is taken up to the next double-quote character.
The address and length of the string are returned.

: C" \ Comp: "ccc<quote>" -- ; Run: -- c-addr

As S" except the address of a counted string is returned.

: LITERAL \ Comp: x -- ; Run: -- x

Compile a literal into the current definition. Usually used in the form
[<expression]LITERAL inside a colon definition. Note that LITERAL is
IMMEDIATE.

: CHAR \ "<spaces>name" -- char

Return the first character of the next token in the input stream. Usually
used to avoid magic numbers in the source code.

: [CHAR] \ Comp: "<spaces>name" -- ; Run: -- char

43

Compile the first character of the next token in the input stream as a literal.
Usually used to avoid magic numbers in the source code.

: [\ --

Switch compiler into interpreter state.

:] \ --

Switch compiler into compilation state.

: IMMEDIATE \ --

Mark the last defined word as IMMEDIATE. Immediate words will execute
whenever encountered regardless of STATE.

: ’ \ "<spaces>name" -- xt

Find the xt of the next word in the input stream. An error occurs if the xt
cannot be found.

: [’] \ Comp: "<spaces>name" -- ; Run: -- xt

Find the xt of the next word in the input stream, and compile it as a literal.
An error occurs if the xt cannot be found.

: [COMPILE] \ "<spaces>name" --

Compile the next word in the input stream. [COMPILE] ignores the
IMMEDIATE state of the word.

[COMPILE] is mostly superceded by POSTPONE.

: (\ "ccc<paren>" --

Begin an inline comment. All text upto the closing bracket is ignored.

: \ \ "ccc<eol>" --

Begin a single-line comment. All text up to the end of the line is ignored.

: ", \ "ccc<quote>" --

Parse text up to the closing quote and compile into the dictionary at HERE
as a counted string. The end of the string is aligned.

: (TO-DO) \ -- ; R: xt -- a-addr’

The run-time action of IS. It is followed by the data addres of the DEFERred
word at which the xt is stored. INTERNAL.

44

: IS \ "<spaces>name" --

The second part of the ASSIGNxxxTO-DOyyy construct. This word will
assign the given XT to be the action of a DEFERed word which is named in
the input stream.

: exit \ R: nest-sys -- ; exit current definition

Compile code into the current definition to cause a definition to terminate.
This is the Forth equivalent to inserting an RTS/RET instruction in the
middle of an assembler subroutine.

: ; \ C: colon-sys -- ; Run: -- ; R: nest-sys --

Complete the definition of a new ’colon’ word or :NONAME code block.

: INTERPRET \ --

Process the current input line as if it is text entered at the keyboard.

: EVALUATE \ i*x c-addr u -- j*x ; interpret the

string

Process the supplied string as though it had been entered via the
interpreter.

: .throw \ throw# --

Display the throw code. Values of 0 and -1 are ignored.

: QUIT \ -- ; R: i*x --

Empty the return stack, store 0 in SOURCE-ID, and enter interpretation
state. QUIT repeatedly ACCEPTs a line of input and INTERPRETs it, with
a prompt if interpreting and ECHOING is on. Note that any task that uses
QUIT must initialise ’TIB, BASE, IPVEC, and OPVEC.

5.16 Startup code

5.16.1 The COLD sequence

At power up, the target executes COLD or the word specified by MAKE-
TURNKEY<name>, or the word specified as the action of an application
compiled by the target.

: (INIT) \ --

45

Performs the high level Forth startup. See the source code for more details.
INTERNAL.

: Commit \ xt|0 --

Preserve the compiled image. If xt is non-zero, that word will be executed
when the application starts.

: Empty \ --

Wipe the application and perform a cold restart.

: COLD \ --

The first high level word executed by default. This word is set to be the
word executed at power up, but this may be overridden by a later use
of MAKE-TURNKEY<name> in the cross-compiled code. See the source
code for more details of COLD.

5.17 Kernel error codes

-1 ABORT

-2 ABORT

-4 Stack underflow

-13 Undefined word.

-14 Attempt to interpret a compile only definition.

-22 Control structure mismatch - unbalanced
control structure.

-121 Attempt to remove with MARKER or FORGET
below FENCE in protected dictionary.

-403 Attempt to compile an interpret only definition.

-501 Error if not LOADing from a block.

46

6 Time Delays

The code in Delays.fth allows you to handle time delays specified in

milliseconds.

: ticks (-- n) <ticks> @ ;

Return current clock value in milliseconds. This value can treated as a 16
bit unsigned value that wraps when it overflows.

: later \ n -- n’

Generates the timebase value for termination in n millseconds time.

: timedout? \ n -- flag ; true if timed out

Flag is returned true if the timebase value n has timed out. TIMEDOUT?

does not call PAUSE.

: ms \ n --

Waits for n milliseconds.

7 Debug tools

Some simple debug tools can be found in dump.fth.

: dump \ addr len --

Display the given block of memory.

: .S \ i*x -- i*x

Display the stack contents

47

8 Compile source code from AIDE

The file include.fth provides support for compiling a source file from the
AIDE server.

: end-load \ -- ; switch back to keyboard input

This word is automatically performed at the end of a download to tidy up
the comms.

: file-error \ n --

Handle an error when a file is being INCLUDEd.

: $include \ $addr -- ; compile host file, counted string

Given a counted string representing a file name, compile the file from AIDE.

: include \ "<filename>" -- ; load file from host

Compile a file across the serial line from the AIDE file server. Use in the
form: include <filename>

The filename extension must be supplied.

48

9 Minimal Umbilical code definitions

The file Min430.fth contains the minimum code definitions required to
support Umbilical Forth. If additional definitions are required, they
may be copied to a new file from Code430lite.fth or kernel72lite.fth.

Note that many of the words documented here are only included by the
early non-optimising compiler. These words will be removed from this
file in a future release. If needed, they may then be copied from another
file.

9.1 Logical and relational operators

: min \ n1 n2 -- min(n1,n2)

Given two data stack items preserve only the smaller.

: max \ n1 n2 -- max(n1,n2)

Given two data stack items preserve only the larger.

code within? \ x a b -- t/f ; true if a<=x<=b

Return TRUE if N1 is within the range N2..N3. This word uses signed
arithmetic.

code within \ n1|u1 n2|u2 n3|u3 -- flag ; ANS 6.2.2440

The ANS version of WITHIN?. Return TRUE if N1 is within the range N2..N3-
1.

This word uses unsigned arithmetic, so that signed compares are treated
as existing on a number circle.

9.2 Control flow

CODE (DO) \ limit start --

The run time action of DO compiled on the target.

CODE (?DO) \ limit start --

The run time action of ?DO compiled on the target.

CODE (LOOP) \ -- ; absolute address follows inline

The run time action of LOOP compiled on the target.

49

CODE (+LOOP) \ n --

The run time action of +LOOP compiled on the target.

code i \ -- n ; return DO ... LOOP index

Return the current DO...LOOP index.

code j \ -- n ; return DO ... LOOP index

Return the outer DO...LOOP index.

CODE EXECUTE \ xt --

Execute the code described by the XT.

This is a Forth equivalent to an assembler JSR/CALL instruction.

Code Noop \ -- ; used by multi-tasker

A NOOP, null instruction.)

CODE S>D \ n -- d

Convert a single number to a double one.

code um* \ u1 u2 -- ud ; unsigned multiply

Perform unsigned-multiply between two numbers and return double
result.

code * \ n1 n2 -- n1*n2 ; signed multiply, : * um*

drop ;

Standard signed multiply. N3 = n1 * n2.

code m* \ n1 n2 -- d ; signed multiply

Signed multiply yielding double result.

code um/mod \ u32 u16 -- urem uquot

Perform unsigned division of double number UD by single number U and
return remainder and quotient.

code sm/rem \ d n -- rem quot ; symmetric division

Perform a signed division of double number D1 by single number N2 and
return remainder and quotient using symmetric (normal) division.

code fm/mod \ d n -- frem fquot ; floored division

50

Perform a signed division of double number D1 by single number N2
and return remainder and quotient using floored division. See the ANS
Forth specification for more details of floored division.

: /mod \ n1 n2 -- rem quot

Signed division of N1 by N2 single-precision yielding remainder and
quotient.

: / \ n1 n2 -- quot

Standard signed division operator. n3 = n1/n2.

: mod \ n1 n2 -- rem

Return remainder of division of N1 by N2. n3 = n1 mod n2.

: MU/MOD \ ud u -- urem udquot

Perform an unsigned divide of a double by a single, returning a single
remainder and a double quotient.

: */MOD \ n1 n2 n3 -- rem quot

Multiply n1 by n2 to give a double precision result, and then divide it by n3
returning the remainder and quotient. The point of this operation is to
avoid loss of precision.

: */ \ n1 n2 n3 -- quot

Multiply n1 by n2 to give a double precision result, and then divide it by n3
returning the quotient. The point of this operation is to avoid loss of
precision.

: M/ \ d n -- quot

Signed divide of a double by a single integer.

CODE negate \ n1 -- -n1

Negate a single number.

: ?negate \ n1 t/f -- n1/-n1

If flag is negative, then negate n1.

: abs \ n1 -- |n1|

If n is negative, return its positive equivalent (absolute value).

code dnegate \ d1 -- -d1

51

Negate a double number.

: ?dnegate \ d1 t/f -- d1/-d1

If flag is negative, then negate d1.

CODE D+ \ d1 d2 -- d3

Add two double precision integers.

CODE D- \ d1 d2 -- d1-d2

Subtract two double precision integers. D3=D1-D2.

9.3 Stack manipulation

Many of the standard Forth stack manipulation words are just code
generators in the cross compiler and have no target versions.

: ROLL \ n1 n2 .. nk n -- wierd

Rotate the order of the top N stack items by one place such that the current
top of stack becomes the second item and the Nth item becomes TOS. See
also ROT. N.B. Very slow.

The standard Forth comparison words words are just code generators in
the cross compiler and have no target versions.

Some of the standard Forth memory manipulation words are just code
generators in the cross compiler and have no target versions.

code c@ \ addr -- b

Fetch and 0 extend the character at memory ADDR and return.

code @ \ addr -- n

Fetch and return the CELL at memory ADDR.

code 2@ \ addr -- d

Fetch and return the two CELLS from memory ADDR and
ADDR+sizeof(CELL). The cell at the lower address is on the top of the stack.

CODE C! \ b addr --

Store the character CHAR at memory C-ADDR.

CODE ! \ n addr --

Store the CELL quantity N at memory ADDR.

52

CODE 2! \ d addr --

Store the two CELLS x1 and x2 at memory ADDR. X2 is stored at ADDR and
X1 is stored at ADDR+CELL.

9.4 String operators

code count \ addr -- addr+1 len

Given the address of a counted string in memory this word will return the
address of the first character and the length in characters of the string.

CODE CMOVE \ source dest len -- ;

copy memory areas

Copy U bytes of memory forwards from C-
ADDR1 to C-ADDR2.

CODE CMOVE> \ source dest len -- ; copy memory areas

As CMOVE but working in the opposite direction, copying the last character
in the string first.

: FILL \ addr len char --

Fill LEN bytes of memory starting at ADDR with the byte information
specified as CHAR.

: (") \ -- addr ; in-line string follows caller, and

skip it

Return the address of a counted string that is inline after the CALLING
word, and adjust the CALLING word’s return address to step over the
inline string. See the definition of (.") for an example.

The runtime action compiled by C".

: (C") \ -- c-addr

The runtime action compiled by S".

: (S") \ -- c-addr u

53

9.5 Umbilical versions of defining words

here is-action-of constant The runtime action for a CONSTANT.

here is-action-of variable The runtime action for a VARIABLE.

here is-action-of user

The runtime action of a USER variable.

: u# \ "<uservar>" -- offset ; u# <uservar>

Return the offset of a USER variable in the user area.

here is-action-of value \ -- n ; default returns the
value The runtime action of a VALUE.

: CRASH \ -- ; used as default action of DEFERred

word

The default action of a DEFERed word. A NOOP.

here is-action-of DEFER \ Comp: "<spaces>name" -- ; Run: i*x
-- j*x The runtime action of a DEFERred word.

9.6 Interrupt handling

The interrupt handling words are just code generators in the cross
compiler and have no target versions.

54

10 MSP430 library

libraries \ resolve

required forward

references

include

%CpuDir%\lib430

\ include

%CommonDir%\library

 \ for standalone

apps

include

%CommonDir%\uflib

\ for Umbilical

apps

end-libs

The library file LIB430.FTH can be used between LIBRARIES and END-
LIBS to resolve outstanding forward references. See the Forth 6 manual for
more details of the library mechanism.

code save-int\ -- n ; save interrupt status

Geturn interrupt status and then disable interrupts. Use [I and I] for new
code.

code restore-int \ n -- ; restore interrupt

Restore state returned by SAVE-INT. Use [I and I] for new code.

: init-iow \ addr --

Copy the contents of the I/O set up table to an I/O device. The data is
written as 16 bit words. See also INIT-IOB. Each element of the table is
of the form addr (cell) followed by data (cell). The table is terminated
by an address of 0. A table of a single 0 address performs no action.

: init-iob \ addr --

Copy the contents of the I/O set up table to an I/O device. The data is
written as 8 bit bytes. See also INIT-IOW. Each element of the table is of
the form addr (cell) followed by data (cell). The table is terminated by an
address of 0. A table of a single 0 address performs no action.

55

11 USCI serial driver

The file MSP430Lite\Drivers\serUSCIp.fth contains the code for a polled
serial driver.

11.1 Baud rate calculation

: genUSCIlf \ baud clock -- brx brsx

Generate the baud rate values for low frequency baud rate settings. The
word can only be executed while interpreting in the cross compiler.

: genUSCIos \ baud clock -- brx brfx

Generate the baud rate values for oversampling baud rate settings. The
word can only be executed while interpreting in the cross compiler.

11.2 UART0

: key?0 \ -- flag

Return true if UART0 received a character.

: key0 \ -- char

Wait for character from UART0 and return it.

: emit0 \ char --

Send a character through UART0.

: type0 \ c-addr len --

Send a string through UART0.

: cr0 \ --

Perform CR on UART0.

console0-speed system-speed genUSCIlf

equ BRS0 equ BRX0

Generate the baud rate values for UART0.

: init-ser \ --

Configure UART0. This word can be hardware dependent. The version
here assumes USCI A0 on P1.1 and P1.2.

56

create Console0 \ -- addr ; OUT

managed by upper driver

The device vector for UART0.

Console0 constant Console

Defines UART0 as the default system console.

11.3 UART1

: key?1 \ -- flag

Return true if UART1 received a character.

: key1 \ -- char

Wait for character from UART1 and return it.

: emit1 \ char --

Send a character through UART1.

: type1 \ c-addr len --

Send a string through UART1.

: cr1 \ --

Perform CR on UART1.

console1-speed system-speed genUSCIlf

equ BRS1 equ BRX1

Generate the baud rate values for UART1.

: init-ser1 \ --

Configure UART1. This word can be hardware dependent. The version
here assumes USCI A1. No port selection is made. This code is only
compiled if another version has not been defined.

create Console1 \ -- addr ; OUT

managed by upper driver

The device vector for UART1.

Console1 constant Console

Defines UART1 as the default system console.

57

11.4 Initialisation

: init-ser \ --

Initialise the serial channels.

58

12 Ticker using watchdog timer

The ticker interrupt is provided in LedTickLP2553.fth.

: ticks (-- n) <ticks> @ ;

Return current clock value in milliseconds. This can be treated as a 16 bit
unsigned value that will wrap when it overflows.

equ TickHz \ -- hz

Ticker speed in Hertz

1000 TickHz / equ Tick-Ms \ -- ms

Milliseconds per tick.

variable LedActive \ -- addr

Set true for LEDs to flash on the timer. Set this to false (zero) when you
want to use the LEDs yourself.

Proc WDT-isr

Assembler coded interrupt service routine.

add .w # Tick-ms &

<ticks>

add .w # Tick-ms &

LedTimer

cmp eq, if, # #1000 &

LedTimer

\ 1 second

timeout

mov .w # 0 &

LedTimer

\ reset timer

cmp ne, if, # 0 &

LedActive

\ if enabled

xor .b # $41 & P1OUT \ toggle LEDs

endif,

endif, reti

end-code

WDT-isr WDT_vec !

59

: Start-Clock \ --

Start the ticker interrupt.

: Stop-Clock \ --

Stop the ticker interrupt

: green-on \ -- ; P1.6

Turn green LED on.

: green-off \ -- ; P1.6

Turn green LED off.

: red-on \ -- ; P1.0

Turn red LED on.

: red-off \ -- ; P1.0

Turn red LED off.

60

13 Device drivers

This chapter documents a number of simple device drivers that can be
added to the system, either by cross-compilation or by direct compilation
onto the target.

13.1 Basic port usage

See the file Drivers\gpio2553.fth.

The user words are as follows:

• HI and LO configure the port bit for output.

• BIT? does not configure the port bit for input.

• SETIN configures the port bit for input.

P1IN CONSTANT PORT1 \ -- addr

Base of Port 1.

P2IN CONSTANT PORT2 \ -- addr

Base of Port 2

: HI \ bit port --

Set bit high.

: LO \ bit port –

: SETIN \ bit port --

Set pin to input. Deselect other functions.

: BIT? \ bit port --- f

Return the state of the bit in the port.

13.2 Port counting using interrupts

See the file Drivers\gpio2553.fth.

The notation is: bit port startcount

61

The code assumes that interrupts are enabled elsewhere.

VARIABLE P1COUNT \ -- addr

Holds the count for Port 1.

VARIABLE P2COUNT \ -- addr

Holds the count for Port 2.

: STARTCOUNT (bit port --)

Start counting transitions for the given bit and port.

: STOPCOUNT (port --)

Stop counting transitions on the given port.

13.3 Simple ADC driver

See the file Drivers\adc2553.fth. The driver is not clever. It does all the

setting up for each conversion - there is no separate set up word. It Leaves

I/O pins in analogue mode until the next conversion. Be careful not to do a
conversion on a digital pin. The supply voltage is used as the reference. 0

corresponds to 0V, 1023 corresponds to VCC.

: ATOD \ channel# -- value

DO a conversion on the given ADC channel (0..7) and return the value.

13.4 PWM

See the file Drivers\pwm2553.fth. The code sets up for three possible
channels of 10 bit PWM for 20 pin device. The PWM frequency is about
7.5KHz.

Use P1.6PWM, P2.1PWM or P2.4PWM to initialise the relevant port and
timer. P1.6 uses Timer0, the other two pins use Timer1. It is best to use
P2.1 and P2.4 first to keep the other timer free. Once initialised, use
P1.6DUTY, P2.1DUTY or P2.4DUTY to set the duty cycle.

: P1.6DUTY \ value --

Set the duty cycle on P1.6, $0..3FF.

: P1.6PWM \ duty --

62

Start PWM on pin 1.6, where duty is $0..3FF

: P2.1PWM \ duty --

Start PWM on pin 2.1, where duty is $0..3FF

: P2.4PWM \ duty --

Start PWM on pin 2.4, where duty is $0..3FF

63

Index

! 14, 39

!csp

!f 27

" 10

", 29

25

#> 25

#s 25

$. 26

$include 35

’ 29

(29

(") 11, 39

(+loop) 9, 37

(.") 23

(?do) 9, 37

(abort") 23

(c") 22, 39

(do) 9, 37

(init) 30

(integer?) 25

(loop) 9, 37

(s") 22, 40

(to-do) 29

64

* 12, 38

*/ 38

*/mod 38

+ 11

+! 15

+digit 25

+loop 27

+user 19

, 21

- 11

-rot 14

. 25

." 26

.free 27

.name 22

.r 25

.s 33

.throw 29

/ 12, 38, 45

/mod 12, 38

/string 10

: 16

; 29

< 13

65

<# 25

<= 13

<> 13

<builds 22

= 13

> 13

>= 13

>body 15

>name 15

>number 25

>r 13

?bs 26

?comp 27

?csp 27

?dnegate 38

?do 27

?dup 14

?exec 27

?negate 38

?pairs 27

?stack 28

?throw 24

?undef 28

66

@ 14, 39

[29

[’] 29

[char] 29

[compile] 29

[if] 7

] 29

\ 29

0< 13

0<> 13

0= 13

0> 13

1+ 11

1- 11

2! 14, 39

2* 11

2+ 11

2- 11

2/ 11

2@ 14, 39

2drop 14

2dup 14

2over 14

2swap 14

67

abort" 24

abs 11, 38

accept 26

again 28

align 21

aligned 15, 21

allot 21

and 12

atod 48

bbic! 16

begin 28

bic! 17

bin 25

bit? 47

bl 19

bor! 16

bounds 15

bs 26

btoggle! 16

btst 16

c! 14, 39

c!f 10

c" 28

68

c, 21

c@ 14, 39

catch 24

cells 15

char 28

check-prefix 26

cmove 10, 39

cmove> 10, 39

cold 30

commit 30

compile, 15

console0 43

console1 44

constant 15, 16, 43, 44, 47

count 10, 39

cr 21

cr0 43

cr1 43

crash 40

create 22

d+ 11, 38

d- 11, 39

d. 25

d.r 25

69

d< 12

d= 12

d> 12

d0= 12

dabs 11

decimal 25

defer 16

depth 27

digit 10

dnegate 11, 38

do 27

docreate 9

does> 16

dp 20

drop 14

dump 33

dup 14, 19

ecld 7

else 28

emit 20

emit0 43

emit1 43

empty 30

end-load 35

70

equ 16

erase 10

evaluate 29

execute 9, 37

exit 29

file-error 35

fill 10, 39

find 22

flerase 10

fm/mod 38

genuscilf 43

genuscios 43

green-off 45

green-on 45

here 21

hex 25

hi 47

hold 25

i 10, 37

if 28

immediate 29

71

include 35

init-iob 41

init-iow 41

init-ser 43, 44

init-ser1 44

interpret 29

invert 13

is 29

is-action-of 27, 40

j 10, 37

key 20

key? 20

key?0 43

key?1 43

key0 43

key1 43

last 20

later 31

leave 10

ledactive 45

literal 28

lo 47

72

loop 27

lshift 13

m* 12, 38

m/ 38

max 37

min 37

mod 12, 38

move 27

ms 31

mu/mod 12, 38

name> 15

negate 11, 38

next-user 19

nip 14

noop 15, 37

number? 26

off 15

on 15

or 16

or! 16

org 21

over 14

73

p1.6duty 48

p1.6pwm 48

p1count 47

p2.1pwm 48

p2.4pwm 48

p2count 47

parse 26

parse-word 26

pause 16

pick 14

place 11

postpone 28

query 26

quit 29

r> 13

r@ 13

rallot 21

ram 21

reboot 16

recurse 28

red-off 45

74

red-on 45

repeat 28

restore-int 41

rhere 21

roll

rom 21

rot 14

rp 20

rshift 13

s" 28

s= 10

s>d 12, 37

save-ch 26

save-int 41

scan 10

search-wordlist 15

setin 47

skip 10

sm/rem 12, 38

source 26

source-id 26

sp-guard 8

space 21

spaces 21

75

start-clock 45

startcount 47

stop-clock 45

stopcount 47

swap 14

system-speed 43, 44

then 28

throw 24

tickhz 45

ticks 31, 45

timedout? 31

toggle! 17

tst 17

tuck 14

type 20

type0 43

type1 43

u# 40

u. 25

u< 13

u> 13

u2/ 11

um* 12, 37

76

um/mod 12, 38

unloop 10

until 28

upc 11

upper 11

user 16

variable 16

wdt-isr 45

while 28

within 15, 37

within? 37

word 27

words 27

xdp 20

xor 12

